
12/6/2009

1

© 2009 Bruce Vining Services, LLC All rights reserved

CL – The Story Continues

Gateway/400 Group: December 2009

Bruce Vining

bvining@brucevining.com

©2009 Bruce Vining Services LLC
2

In This Session ...

 We will review some of the significant
enhancements that have been made in CL
during the last three releases.

 By the end of this session, attendees will be
able to:
– Use new data types such as integer and pointer

– Use multiple files in one program

– Use programming constructs such as:

• DoFor, DoWhile, DoUntil

• Subroutines

– Use structures and based variables

– Use new compiler options

12/6/2009

2

©2009 Bruce Vining Services LLC
3

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Integers

 Direct support for signed and unsigned variables with V5R3
– Dcl Var(&Signed) Type(*Int)

– Dcl Var(&Unsigned) Type(*UInt)

 Much nicer than using the previous %Bin built-in support
– The “old” way:

Dcl Var(&Char) Type(*Char) Len(4)

ChgVar Var(%Bin(&Char)) Value(10)

– The “new” way:

Dcl Var(&Signed) Type(*Int)

ChgVar Var(&Signed) Value(10)

 Much more productive debug assistance also
– Eval &Char displays “blobs”

– Eval &Char:x displays 0000000A

– Eval &Signed displays 10

12/6/2009

3

©2009 Bruce Vining Services LLC

Integers (continued)

 Integers can be 2 or 4-bytes in length

– With 2-byte integers (Len(2))
• Signed values from -32,768 to 32,767

• Unsigned values can be from 0 to 65,535

– With 4-byte integers (Len(4))
• Signed values from -2,147,483,648 to 2,147,483,647

• Unsigned values from 0 to 4,294,967,295

– The default is a length of 4 bytes

 V5R4 integer support on DclF command and
Declare Binary Fields (DclBinFld) keyword
– DclF File(VC2Emp) DclBinFld(*Int)

– For compatibility DclBinFld defaults to *Dec

©2009 Bruce Vining Services LLC
6

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

12/6/2009

4

©2009 Bruce Vining Services LLC

Multiple File Support

 CL programs and procedures can have up to 5 files per program
with V5R3
– The files can be the same file or different files

 When more than 1 file is declared in a program
– An open identifier (OpnID) is required for all files except 1

• DclF File(VC2Emp) OpnID(X)

– OpnID(*None) can be used for at most one file

 OpnID is supported with:
Declare File (DclF) Receive File (RcvF)

End Receive File (EndRcv) Wait (Wait)

Send File (SndF) Send and Receive File (SndRcvF)

 New Close (Close) command in V6R1 supports OpnID and can
be used to close data base files (not display files)
– File will be re-opened on first RcvF command being run

©2009 Bruce Vining Services LLC

Multiple File Support

(continued)

 OpnID is carried over to CL variable names
DclF File(VC2Emp) OpnID(X)

 DDS for VC2EMP data base file
R EMPRCD

EMPNBR 5 0 TEXT('Employee Number')

EMPSTS 1 TEXT('Employee Status')

EMPFNAME 40 TEXT('Employee First Name')

EMPDPT 2 TEXT('Employee Department')

 CL variables declared as:
&X_EMPNBR *DEC 5 0

&X_EMPSTS *CHAR 1

&X_EMPFNAME *CHAR 40

&X_EMPDPT *CHAR 2

 Consideration:
– Good: variables are unique per file

– Bad: variables are unique per file
ChgVar Var(&X_EMPNBR) Value(&Y_EMPNBR)

12/6/2009

5

©2009 Bruce Vining Services LLC
9

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Programming

Constructs

 Additional DO Options with V5R3
– DoFor

– DoWhile

– DoUntil

– Leave

– Iterate

 Select Processing with V5R3
– Select

– When

– Otherwise

– EndSelect

 Subroutines with V5R4

12/6/2009

6

©2009 Bruce Vining Services LLC

DoFor

 DoFor processes a group of CL commands zero or more times

DoFor Var(&Counter) From(&Y) To(&X) By(1)

 Var(&Counter) is used as the control variable for the DoFor loop

– Variable must be an *Int or *Uint datatype

 From(&Y) is used to initially set the value of the control variable

– Can be an integer constant

DoFor Var(&Counter) From(1) To(&X) By(1)

– Can be an *Int or *Uint datatype

DoFor Var(&Counter) From(&Y) To(&X) By(1)

– Can be an expression resulting in an integer value

DoFor Var(&Counter) From(&Y - &Z) To(&X) By(1)

©2009 Bruce Vining Services LLC

DoFor (continued)

 To(&X) is used to determine the final value to compare to the control
variable

– Can be an integer constant

DoFor Var(&Counter) From(&Y) To(1) By(1)

– Can be an *Int or *Uint datatype
DoFor Var(&Counter) From(&Y) To(&X) By(1)

– Can be an expression resulting in an integer value
DoFor Var(&Counter) From(&Y) To(&X + &Z) By(1)

 By(1) defines the value to increment Var(&Counter) on each loop
– By() is optional and defaults to 1

– By() can be any positive or negative integer value

– By() must be a constant (no variables, no expressions)

 To(&X) value is tested prior to each loop with the control variable
– If By() is 0 or positive and Var(&Counter) is *LE To(&X) the loop will be run

– If By() is negative and Var(&Counter) is *GE To(&X) the loop will be run

– The CL commands to run are delimited by the DoFor and associated EndDo
commands

12/6/2009

7

©2009 Bruce Vining Services LLC

DoWhile

 DoWhile processes a group of CL commands zero or more times

while a condition is true (that is, the condition is tested prior to

running the Do group)

 The condition can be:

– An expression

DoWhile Cond(&Char = A)

– A logical CL variable (for instance &In03 for command key 3)

DoWhile Cond(*not &IN03)

– Utilizing built-ins

DoWhile Cond(%Sst(&Char 1 3) = VIN)

 The CL commands to run are delimited by the DoWhile and

associated EndDo commands

©2009 Bruce Vining Services LLC

DoUntil

 DoUntil processes a group of CL commands one or more times

until a condition is true (that is, the condition is tested after

running the Do group)

 The condition can be:

– An expression

DoUntil Cond(&Char = A)

– A logical CL variable

DoUntil Cond(&IN03)

– Utilizing built-ins

DoUntil Cond(%Sst(&Char 1 3) = VIN)

 The CL commands to run are delimited by the DoUntil and

associated EndDo commands

12/6/2009

8

©2009 Bruce Vining Services LLC

Leave

 Leave exits the active DoFor, DoWhile, or DoUntil CL command group(s).
– Leave CmdLbl(*CURRENT) causes the program to exit the current DoXXXXX group of

CL commands and run the CL command following the associated EndDo command.
This is the default.

– Leave CmdLbl(XYZ) causes the program to exit all active DoXXXXX groups of CL
commands at or imbedded within the DoXXXXX group labeled XYZ

XYZ: DoWhile Cond(&Char = A)

DoFor Var(&Counter) From(&Y) To(&X)

If Cond(&In03) Then(Leave CmdLbl(XYZ))

/* Do some work */

If Cond(&Status = ABCxxx) Then(Leave)

/* Do more work */

EndDo

/* Do even more work... */

EndDo

/* And some more... */

©2009 Bruce Vining Services LLC

Iterate

 Iterate immediately passes control to the associated EndDo command and retests the
condition of the associated DoFor, DoWhile, or DoUntil group

– Iterate CmdLbl(*CURRENT) causes the program to retest the current DoXXXXX
condition. This is the default.

– Iterate CmdLbl(XYZ) causes the program to retest the DoXXXXX condition labeled
XYZ

XYZ: DoWhile Cond(&Char = A)

DoFor Var(&Counter) From(&Y) To(&X)

If Cond(&In03) Then(Iterate CmdLbl(XYZ))

/* Do some work */

If Cond(&Status = ReTest) Then(Iterate)

If Cond(&Status = GetOut) Then(Leave)

/* Do more work */

EndDo

/* Do even more work... */

EndDo

/* And some more... */

12/6/2009

9

©2009 Bruce Vining Services LLC

Select Groups

 The Select command begins a control structure for
conditional processing

 The When command identifies a condition to be tested
– One or more When commands can be defined in a Select group

– When commands are tested in the order found in the Select group

– When commands are mutually exclusive. If one When condition
tests true then no additional When conditions are tested. So the
ordering of the When conditions can be very important

– Processing resumes after the associated EndSelect command

 The OtherWise command identifies the CL command to be
run if no When condition tests true
– OtherWise is not required in a Select group

– I highly recommend having one though

 The EndSelect command defines the end of the current
Select group

 Select groups can be nested

©2009 Bruce Vining Services LLC

Select Groups

(continued)

DoWhile Cond(&More_Input)

Select

When Cond(&In03) Then(Return)

When Cond(&In12) Then(Leave)

When Cond(&Action = Yes) Then(Do)

/* Do appropriate work */

EndDo

When Cond(&Action = Maybe) Then(Do)

/* Do appropriate work */

EndDo

When Cond((&Action = No) *And +

(&Stat *LT 10)) Then(Do)

/* Do appropriate work */

EndDo

When Cond((&Action = No) *And +

(&Stat *GE 10)) Then(Do)

/* Do appropriate work */

EndDo

OtherWise Cmd(Do)

/* Do appropriate work */

EndDo

EndSelect

/* Do appropriate work after all conditions handled */

EndDo

12/6/2009

10

©2009 Bruce Vining Services LLC

Select Groups

(continued)

 Select groups are my personal favorite (of this section of the session that is)

 Avoids nesting If/Else logic
DoWhile Cond(&More_Input)

If Cond(&In03) Then(Return)

If Cond(&In12) Then(Leave)

If Cond(&Action = Yes) Then(Do)

/* Do appropriate work */

EndDo

Else Cmd(If Cond(&Action = Maybe) Then(Do))

/* Do appropriate work */

EndDo

If Cond((&Action = No) *And +

(&Stat *LT 10)) Then(Do)

/* Do appropriate work */

EndDo

Else Cmd(…… Just more of the same……)

/* Do appropriate work after all the „If‟s */

EndDo

– Easier to read and follow (for me anyway)

 Avoids many GoTo commands to a common end of the If logic if trying to avoid nested
If/Else logic

 OtherWise makes sure I consider “what if”

 Easy to start utilizing

©2009 Bruce Vining Services LLC

Subroutines

 Subroutines provide for sharing of CL program code within a
procedure

 Subroutines cannot declare local variables

 Subroutines cannot be passed parameter values

 Subroutines can return a value to the caller of the subroutine

 Subroutines are physically found in the CL source program after the
main line commands and before the EndPgm command

Pgm

Dcls, DclFs, CopyRight, etc

. . .

CallSubr Subr(Common)

. . .

Return

Subr Subr(Common)

. . .

EndSubr

EndPgm

12/6/2009

11

©2009 Bruce Vining Services LLC

Subroutines

(continued)

 Call Subroutine (CallSubr)
CallSubr Subr(Common) RtnVal(&Value)

– Passes control to the specified subroutine

– Subr identifies the subroutine being called. The subroutine name cannot be a

CL variable

– RtnVal is an optional return value from the subroutine. If used the variable

must be a 4-byte signed integer

– A subroutine can call itself and/or be called by other subroutines

 Declare Processing Options (DclPrcOpt)
DclPrcOpt SubrStack(500)

– Declares how many nested subroutine calls can be supported

– Default number of nested subroutine calls is 99

– The supported range is from 20 to 9,999

– DclPrcOpt command must be located with other Dcl type commands

©2009 Bruce Vining Services LLC

Subroutines

(continued)

 Subroutine (Subr)
Subr Subr(Common)

– Identifies the start of a subroutine

– Must be after the main procedure and before the EndPgm command

 End Subroutine (EndSubr)
EndSubr RtnVal(&RtnCde)

– Identifies the end of a subroutine

– Control is immediately returned to CL command following the CallSubr command
which called the subroutine

– RtnVal is an optional return value from the subroutine. If used the variable must
be a 4-byte signed integer variable or an integer constant. The default value is 0

 Return from Subroutine (RtnSubr)

RtnSubr RtnVal(&RtnCde)

– Conceptually like Leave within a DoXXXXX group

– Control is immediately returned to CL command following the CallSubr command
which called the subroutine

– RtnVal is an optional return value from the subroutine. If used the variable must
be a 4-byte signed integer variable or an integer constant. The default value is 0

12/6/2009

12

©2009 Bruce Vining Services LLC
23

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Pointers –

Some Background

 Assume you have these DCLs in a program:

Dcl Var(&Text) Type(*Char) Len(20) Value('Some text')

Dcl Var(&More) Type(*Char) Len(5) Value('ABC')

Dcl Var(&OK) Type(*Lgl) Value('1')

Dcl Var(&Code) Type(*Char) Len(1) Value('X')

 Then in memory (activation group) there is conceptually:

????????Some~text~~~~~~~~~~~ABC~~1X????????????????

– With ? representing a variable value for another program that is active in your job

– And ~ is a blank within your program variable

 A pointer is a variable that is set to the address of your variable
within memory
– If the address of the first ? is decimal 12345678 then the address of

&Text is decimal 12345686 (12345678 + 8) as there are 8 ?s.

12/6/2009

13

©2009 Bruce Vining Services LLC

Pointers –

Background (continued)

 If you have ever called a program or run a command you
have used pointers without (necessarily) knowing it

Dcl Var(&Text) Type(*Char) Len(20) Value('Some text')

Call Pgm(ABC) Parm(&Text)

 Under the covers the Call command is passing a pointer to
the &Text variable (ie, the address of &Text)

Pgm Parm(&Text)

Dcl Var(&Text) Type(*Char) Len(20)

 Which is why:
– Variable names do not have to be the same across programs

– Variable definitions do not have to match (though they should)

– Changes made to &Text by program ABC are immediately reflected in the
calling program (as &Text really is in the calling programs memory)

©2009 Bruce Vining Services LLC

Pointer Variables

 Direct support for pointer variables with V5R4

Dcl Var(&MyPointer) Type(*Ptr)

 New optional Address keyword for Dcl command

Dcl Var(&Text) Type(*Char) Len(20) +
Value(„Some text‟)

Dcl Var(&MyPointer) Type(*Ptr) Address(&Text 5)

– Sets &MyPointer to the address of the 6th byte of CL variable &Text (the initial
„t‟ of „text‟)

– The offset (5 in the example) is optional and defaults to 0 (the start of the
variable) Note that offset is base 0

 Dcl command restrictions/considerations
– Len keyword is not valid if Type(*Ptr). Pointers are fixed at 16 bytes in length

– Value keyword is not valid if Type(*Ptr). The Address keyword is used to set
the initial address assigned to the pointer variable

12/6/2009

14

©2009 Bruce Vining Services LLC

Pointer Variables

(continued)

 New %Address built-in
– Can be abbreviated to %Addr

– Used to change the address stored in a pointer variable
ChgVar Var(&MyPointer) Value(%Addr(&Text))

– Used to test the address of a pointer variable
If Cond(&MyPointer) *NE %Addr(&Text) Then(+

ChgVar Var(&MyPointer) Value(%Addr(&Text)))

– *NULL special value support with V6R1. Used to set or test for the absence of a
valid address in a pointer variable

 New %Offset built-in
– Can be abbreviated to %Ofs

– Used to change the offset portion of a pointer variable

ChgVar Var(%ofs(&MyPointer)) Value(%ofs(&MyPointer) + 5)

– Used to get the offset portion of a pointer variable

Dcl Var(&MyOffset) Type(*Uint)

ChgVar Var(&MyOffset) Value(%ofs(&MyPointer))

©2009 Bruce Vining Services LLC

Based Variables

 A CL variable that has no storage allocated
– Variable is a ”view” of memory

– The view is applied to what ever memory an associated
pointer variable address points it to

Dcl Var(&Text) Type(*Char) Len(20) +
Value(„Some text‟)

Dcl Var(&MyPointer) Type(*Ptr) Address(&Text 5)

Dcl Var(&MyText) Type(*Char) Len(5) +
Stg(*Based) BasPtr(&MyPointer)

– The value of &MyText is ‟text ‟

– The based variable must be defined with Stg(*Based) and a
base pointer (BasPtr) specified

 When a CL program is called with parameters, the Program
(Pgm) Parm keyword effectively creates based variable
views of the calling programs memory

12/6/2009

15

©2009 Bruce Vining Services LLC

Pointers and Based

Variables

 Let‟s put some of what we‟ve learned to use

 The command LISTCMD displays a list of up to 50 words. The
command is defined as:

CMD PROMPT('Give Me a List')

PARM KWD(LIST) TYPE(*CHAR) LEN(10) MAX(50) +

PROMPT('List of something or other')

 LISTCMD is created with
CRTCMD CMD(LISTCMD) PGM(LISTCPP)

 LISTCMD is run with
LISTCMD LIST(CL IS A POWERFUL LANGUAGE)

 LISTCMD displays the list as
CL

IS

A

POWERFUL

LANGUAGE

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory and passed as a parameter to LISTCPP:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

xxxx is a 2-byte binary value holding the number of parameters passed in the List

 The Command Processing Program (CPP) declares
Pgm Parm(&List)

Dcl Var(&List) Type(*Char) Len(502)

Dcl Var(&List_Size) Type(*Dec) Len(5 0)

Dcl Var(&Counter) Type(*Dec) Len(5 0) Value(0)

Dcl Var(&Item_Dsp) Type(*Dec) Len(5 0) Value(3)

Dcl Var(&List_Item) Type(*Char) Len(10)

– &List is declared as Len(502). The maximum size of a Max(50) list of 10 byte list elements plus
2 bytes for the number of list entries

– &List_Size is used to hold the numeric version of how many list entries there are

– &Counter keeps track of how many list entries we have processed

– &Item_Dsp is the displacement into &List for 1st list entry

12/6/2009

16

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Get the number of list entries using the %Bin builtin and convert it to
a numeric value (&List_Size)

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Check if all list entires have been processed

– If not run the Do loop

– If all have been processed continue processing after the EndDo

12/6/2009

17

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Get the current list entry and move it to &List_Item

– Display the &List_Item

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Increment &Item_Dsp by the size of one list entry so we are now
looking at the next possible entry

– Increment &Counter by 1 to reflect that we‟ve done one more list
entry

– Go to Again to check if there are more list entries to process

12/6/2009

18

©2009 Bruce Vining Services LLC

LISTCMD CPP –

Old way alternative

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

SndPgmMsg Msg(%Sst(&List &Item_Dsp 10))

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Perform the %Sst built-in as part of the SndPgmMsg Msg expression

– The %Sst built-in is still moving the data under the covers

– Not as self-documenting as using &List_Item

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The Command Processing Program (CPP) declares
Pgm Parm(&List_Size)

Dcl Var(&List_Size) Type(*Int) Len(2)

Dcl Var(&List_Ptr) Type(*Ptr)

Dcl Var(&List_Item) Type(*Char) Stg(*Based) +

Len(10) BasPtr(&List_Ptr)

Dcl Var(&Counter) Type(*Int)

– &List_Size is declared as a 2-byte integer value
• No need to declare the 500 bytes of possible text

• No need to use %Bin to convert the value to a numeric variable

12/6/2009

19

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The Command Processing Program (CPP) declares
Pgm Parm(&List_Size)

Dcl Var(&List_Size) Type(*Int) Len(2)

Dcl Var(&List_Ptr) Type(*Ptr)

Dcl Var(&List_Item) Type(*Char) Stg(*Based) +

Len(10) BasPtr(&List_Ptr)

Dcl Var(&Counter) Type(*Int)

– &List_Item is declared as a 10-byte character view based on the
value of &List_Ptr

– &Counter continues to be a count of how many list entries have been
processed

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic

ChgVar Var(&List_Ptr) Value(%Addr(&List_Size))

ChgVar Var(%Ofs(&List_Ptr)) Value(%Ofs(&List_Ptr) + 2)

DoFor Var(&Counter) From(1) To(&List_Size)

SndPgmMsg Msg(&List_Item)

ChgVar Var(%Ofs(&List_Ptr)) +

Value(%Ofs(&List_Ptr) + 10)

EndDo

– Set &List_Ptr to the address of &List_Size (the parameter passed)

– Increment &List_Ptr by the size of the &List_Size variable (2 bytes) so that

the pointer now addresses the first list entry

12/6/2009

20

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic

ChgVar Var(&List_Ptr) Value(%Addr(&List_Size))

ChgVar Var(%Ofs(&List_Ptr)) Value(%Ofs(&List_Ptr) + 2)

DoFor Var(&Counter) From(1) To(&List_Size)

SndPgmMsg Msg(&List_Item)

ChgVar Var(%Ofs(&List_Ptr)) +

Value(%Ofs(&List_Ptr) + 10)

EndDo

– DoFor the number of list entries passed by the command (&List_Size)

– When all list entries are done continue processing after the EndDo

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic

ChgVar Var(&List_Ptr) Value(%Addr(&List_Size))

ChgVar Var(%Ofs(&List_Ptr)) Value(%Ofs(&List_Ptr) + 2)

DoFor Var(&Counter) From(1) To(&List_Size)

SndPgmMsg Msg(&List_Item)

ChgVar Var(%Ofs(&List_Ptr)) +

Value(%Ofs(&List_Ptr) + 10)

EndDo

– Display the &List_Item with no movement of the data

– Increment &List_Ptr by the size of one list entry so we are now viewing at the

next possible entry

– No need to increment &Counter as the DoFor takes care of that for us

12/6/2009

21

©2009 Bruce Vining Services LLC

Pointers and Based

Variables

 Pointers and based variables are most likely not something

you will use everyday

 They are however an important tool that you should add to

your programming toolbox.

 When appropriately used, they can provide:

– Excellent performance

• No data movement as there is with ChgVar or %Sst

– Easier reviewing of the code

• No substring built-ins for instance to figure out

– Can be more self documenting (if you are careful about

variable names)

©2009 Bruce Vining Services LLC

Comparison

 Old way
Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

 New way with DoFor and based variables
DoFor Var(&Counter) From(1) To(&List_Size)

SndPgmMsg Msg(&List_Item)

ChgVar Var(%Ofs(&List_Ptr)) +

Value(%Ofs(&List_Ptr) + 10)

EndDo

 Let‟s see: Runs faster, less code to type, easy to read...

And incidently, changing the list from 50 to 300 ”words” requires
no change to the CPP – just the PARM definition!
I know which way I would go 

12/6/2009

22

©2009 Bruce Vining Services LLC
43

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Structures

 Direct support for structures with V5R4
Dcl Var(&MyStruct) Type(*Char) Len(100)

Dcl Var(&A_SubField) Type(*Char) Len(10) +

Stg(*Defined) DefVar(&MyStruct 51)

 Essentially the ability to name a portion of a previously

defined variable

 Storage (Stg) *Defined indicates that no additional storage

for the CL variable is to be allocated. The storage has

been previously allocated

 Defined on variable (DefVar) identifies the CL variable

being defined on. Position identifies the starting position of

the subfield within the defined on variable. Default is 1
– &A_SubField is defined as a *Char variable that starts at position 51 of the

variable &MyStruct and has a length of 10 bytes. Note that this is base 1

12/6/2009

23

©2009 Bruce Vining Services LLC

Structures

(continued)

 The subfield does not need to be of the same data type
Dcl Var(&MyStruct) Type(*Char) Len(100)

Dcl Var(&Integer) Type(*Int) +

Stg(*Defined) DefVar(&MyStruct 5)

– No need to use %Bin built-in to extract a binary field

– Can use a meaningful name for the subfield

 A *Char subfield is directly accessible (as are other types

such as *Ptr)
Dcl Var(&MyStruct) Type(*Char) Len(100)

Dcl Var(&PhoneNbr) Type(*Char) Len(10) +

Stg(*Defined) DefVar(&MyStruct 81)

– No need to use %Sst built-in to extract the field

– Can use a meaningful name for subfield

 DefVar CL variable can be Stg(*Based)

 Great for parameters when working with other user

programs or system APIs

©2009 Bruce Vining Services LLC

Structures

(continued)

 RPG
dMyStruct ds

d Char_Fld_1 10

d Int_Fld_1 10i 0

d Char_Fld_2 1

d Int_Fld_2 10i 0

d Int_Fld_3 10i 0

 COBOL
01 MY-STRUCT.

05 CHAR-FLD-1 PIC X(00010).

05 INT-FLD-1 PIC S9(00009) BINARY.

05 CHAR-FLD-2 PIC X(00001).

05 INT-FLD-2 PIC S9(00009) BINARY.

05 INT-FLD-3 PIC S9(00009) BINARY.

12/6/2009

24

©2009 Bruce Vining Services LLC

Structures

(continued)

 Traditional CL approach
Dcl Var(&MyStruct) Type(*Char) Len(23)

Dcl Var(&Char_Fld_1) Type(*Char) Len(10)

Dcl Var(&Int_Fld_1) Type(*Dec) Len(10 0)

Dcl Var(&Char_Fld_2) Type(*Char) Len(1)

Dcl Var(&Int_Fld_2) Type(*Dec) Len(10 0)

Dcl Var(&Int_Fld_3) Type(*Dec) Len(10 0)

ChgVar Var(&Char_Fld_1) Value(%Sst(&MyStruct 1 10))

ChgVar Var(&Int_Fld_1) Value(%Bin(&MyStruct 11 4))

ChgVar Var(&Char_Fld_2) Value(%Sst(&MyStruct 15 1))

ChgVar Var(&Int_Fld_2) Value(%Bin(&MyStruct 16 4))

ChgVar Var(&Int_Fld_3) Value(%Bin(&MyStruct 20 4))

 Define appropriate fields and move the data to them

©2009 Bruce Vining Services LLC

Structures

(continued)

 CL with Stg(*Defined)
Dcl Var(&MyStruct) Type(*Char) Len(23)

Dcl Var(&Char_Fld_1) Type(*Char) Stg(*Defined) +

Len(10) DefVar(&MyStruct)

Dcl Var(&Int_Fld_1) Type(*Int) Stg(*Defined)

DefVar(&MyStruct 11)

Dcl Var(&Char_Fld_2) Type(*Char) Stg(*Defined) +

Len(1) DefVar(&MyStruct 15)

Dcl Var(&Int_Fld_2) Type(*Int) Stg(*Defined) +

DefVar(&MyStruct 16)

Dcl Var(&Int_Fld_3) Type(*Int) Stg(*Defined) +

DefVar(&MyStruct 20)

 Define the fields and you‟re done. The data is ready to go.

 Care to guess which performs better?

12/6/2009

25

©2009 Bruce Vining Services LLC
49

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Compiler Options

 Include CL Source (Include) command for V6R1

Include SrcMbr(MyInclude)

 Imbeds another source member within the compiled source

 Optional SrcFile keyword to identify source file the member

is in

– Default is *IncFile – use the source file specified for the new

CRTCLPGM or CRTBNDCL IncFile keyword

– Default for IncFile keyword is to use the source file being compiled

from

 Can be used to imbed declare type commands and/or

commands to be run at run-time

 Does not support imbedded Include commands

12/6/2009

26

©2009 Bruce Vining Services LLC

Compiler Options

 Declare Processing Options (DclPrcOpt) command in the CL
source member can define additional compiler processing options
with V6R1

DclPrcOpt UsrPrf(*Owner) BndDir(MyBndDir) etc.

 Options supported:
ActGrp Log

AlwRtvSrc SrtSeq

Aut StgMdl

BndDir Text

BndSrvPgm UsrPrf

DftActGrp

LangID

 DclPrcOpt value takes precedence over Crt command

 Avoid lengthy problem determination due to a program being
compiled with the wrong options

©2009 Bruce Vining Services LLC
52

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compile Options

 Wrap-up

12/6/2009

27

©2009 Bruce Vining Services LLC

Additional Resources

 IBM i5/OS Information Center
– V5R3: http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp

– V5R4: http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

– V6R1: http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/index.jsp

 Many examples in my CL-related articles
– http://www.brucevining.com/

– Select Publications

– Select Control Language (CL)

©2009 Bruce Vining Services LLC
54

Some Key Points

to Take Home

 CL continues to grow more flexible and powerful

 Recent CL enhancements can improve both
your productivity and system performance – a
true win/win situation 

– Stg(*Defined)

– Stg(*Based)

– DoFor, DoWhile, DoUntil

– DclPrcOpt – avoids mistakes when compiling…

 CL will continue to grow in the future

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/index.jsp
http://www.brucevining.com/

12/6/2009

28

©2009 Bruce Vining Services LLC
55

Future Possible

Enhancements

 Support for 8-byte *Int and *Uint data types

 Encrypted source debug listing support

 RtvCLSrc support for ILE CL

 Higher precision *Dec support

 Arrays

 Date, Time, and Timestamp support

 Floating point support

 But NO Guarantees

©2008 Bruce Vining Services LLC
56 56

Last Chance

Before the Break

How to contact me:

Bruce Vining

bvining@brucevining.com

12/6/2009

29

©2009 Bruce Vining Services LLC

PowerCL:

eXtreme CL (XCL)

 Enhanced Productivity for CL Developers

 Provides Commands Such As:
– Character Variable commands

• Upper Case (UPRCASE), Lower Case (LWRCASE)

• Find String (FNDSTR), Find and Replace String (FNDRPLSTR)

• Change CCSID (CHGTOCCSID) and more

– Date, Time and Timestamp commands
• Change Date (CHGDATXCL), Change Time (CHGTIMXCL), Change

Timestamp (CHTTSXCL)

• Retrieve Duration (RTVDURXCL) and more

– Data Queue commands
• Send, Receive, and Remove Entries (SNDDTAQE, RCVDTAQE,

RMVDTAQE)

• Display Entries (DSPDTAQE) and more

– User Space commands, Memory Management commands, Message
Monitoring commands

 Requires V5R4 or later

 Support for ILE and OPM Environments

 For more information- http://www.brucevining.com/

©2009 Bruce Vining Services LLC

PowerCL:

CL for Files (CLF)

 CL File Support
– Externally described and Program described

– Database – Physical, Logical, DDM, SQL Views
• Read/Write/Update/Delete

• Arrival Sequence or Indexed Access

• Commitment Control

• Null Fields, Variable-length fields

– Display files
• Subfiles

• Separate Indicator Area

– Printer files

– Commands such as ReadRcdCLF and CHAIN; PosDBFCLF and
SETLL; WrtReadCLF and EXFMT

 Multiple file support is more flexible than standard CL

 Superset of RPG/COBOL/C capabilities

 Requires V5R4 or later

 Support for ILE and OPM Environments

 For more information- http://www.powercl.com/

