
12/6/2009

1

© 2009 Bruce Vining Services, LLC All rights reserved

CL – The Story Continues

Gateway/400 Group: December 2009

Bruce Vining

bvining@brucevining.com

©2009 Bruce Vining Services LLC
2

In This Session ...

 We will review some of the significant
enhancements that have been made in CL
during the last three releases.

 By the end of this session, attendees will be
able to:
– Use new data types such as integer and pointer

– Use multiple files in one program

– Use programming constructs such as:

• DoFor, DoWhile, DoUntil

• Subroutines

– Use structures and based variables

– Use new compiler options

12/6/2009

2

©2009 Bruce Vining Services LLC
3

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Integers

 Direct support for signed and unsigned variables with V5R3
– Dcl Var(&Signed) Type(*Int)

– Dcl Var(&Unsigned) Type(*UInt)

 Much nicer than using the previous %Bin built-in support
– The “old” way:

Dcl Var(&Char) Type(*Char) Len(4)

ChgVar Var(%Bin(&Char)) Value(10)

– The “new” way:

Dcl Var(&Signed) Type(*Int)

ChgVar Var(&Signed) Value(10)

 Much more productive debug assistance also
– Eval &Char displays “blobs”

– Eval &Char:x displays 0000000A

– Eval &Signed displays 10

12/6/2009

3

©2009 Bruce Vining Services LLC

Integers (continued)

 Integers can be 2 or 4-bytes in length

– With 2-byte integers (Len(2))
• Signed values from -32,768 to 32,767

• Unsigned values can be from 0 to 65,535

– With 4-byte integers (Len(4))
• Signed values from -2,147,483,648 to 2,147,483,647

• Unsigned values from 0 to 4,294,967,295

– The default is a length of 4 bytes

 V5R4 integer support on DclF command and
Declare Binary Fields (DclBinFld) keyword
– DclF File(VC2Emp) DclBinFld(*Int)

– For compatibility DclBinFld defaults to *Dec

©2009 Bruce Vining Services LLC
6

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

12/6/2009

4

©2009 Bruce Vining Services LLC

Multiple File Support

 CL programs and procedures can have up to 5 files per program
with V5R3
– The files can be the same file or different files

 When more than 1 file is declared in a program
– An open identifier (OpnID) is required for all files except 1

• DclF File(VC2Emp) OpnID(X)

– OpnID(*None) can be used for at most one file

 OpnID is supported with:
Declare File (DclF) Receive File (RcvF)

End Receive File (EndRcv) Wait (Wait)

Send File (SndF) Send and Receive File (SndRcvF)

 New Close (Close) command in V6R1 supports OpnID and can
be used to close data base files (not display files)
– File will be re-opened on first RcvF command being run

©2009 Bruce Vining Services LLC

Multiple File Support

(continued)

 OpnID is carried over to CL variable names
DclF File(VC2Emp) OpnID(X)

 DDS for VC2EMP data base file
R EMPRCD

EMPNBR 5 0 TEXT('Employee Number')

EMPSTS 1 TEXT('Employee Status')

EMPFNAME 40 TEXT('Employee First Name')

EMPDPT 2 TEXT('Employee Department')

 CL variables declared as:
&X_EMPNBR *DEC 5 0

&X_EMPSTS *CHAR 1

&X_EMPFNAME *CHAR 40

&X_EMPDPT *CHAR 2

 Consideration:
– Good: variables are unique per file

– Bad: variables are unique per file
ChgVar Var(&X_EMPNBR) Value(&Y_EMPNBR)

12/6/2009

5

©2009 Bruce Vining Services LLC
9

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Programming

Constructs

 Additional DO Options with V5R3
– DoFor

– DoWhile

– DoUntil

– Leave

– Iterate

 Select Processing with V5R3
– Select

– When

– Otherwise

– EndSelect

 Subroutines with V5R4

12/6/2009

6

©2009 Bruce Vining Services LLC

DoFor

 DoFor processes a group of CL commands zero or more times

DoFor Var(&Counter) From(&Y) To(&X) By(1)

 Var(&Counter) is used as the control variable for the DoFor loop

– Variable must be an *Int or *Uint datatype

 From(&Y) is used to initially set the value of the control variable

– Can be an integer constant

DoFor Var(&Counter) From(1) To(&X) By(1)

– Can be an *Int or *Uint datatype

DoFor Var(&Counter) From(&Y) To(&X) By(1)

– Can be an expression resulting in an integer value

DoFor Var(&Counter) From(&Y - &Z) To(&X) By(1)

©2009 Bruce Vining Services LLC

DoFor (continued)

 To(&X) is used to determine the final value to compare to the control
variable

– Can be an integer constant

DoFor Var(&Counter) From(&Y) To(1) By(1)

– Can be an *Int or *Uint datatype
DoFor Var(&Counter) From(&Y) To(&X) By(1)

– Can be an expression resulting in an integer value
DoFor Var(&Counter) From(&Y) To(&X + &Z) By(1)

 By(1) defines the value to increment Var(&Counter) on each loop
– By() is optional and defaults to 1

– By() can be any positive or negative integer value

– By() must be a constant (no variables, no expressions)

 To(&X) value is tested prior to each loop with the control variable
– If By() is 0 or positive and Var(&Counter) is *LE To(&X) the loop will be run

– If By() is negative and Var(&Counter) is *GE To(&X) the loop will be run

– The CL commands to run are delimited by the DoFor and associated EndDo
commands

12/6/2009

7

©2009 Bruce Vining Services LLC

DoWhile

 DoWhile processes a group of CL commands zero or more times

while a condition is true (that is, the condition is tested prior to

running the Do group)

 The condition can be:

– An expression

DoWhile Cond(&Char = A)

– A logical CL variable (for instance &In03 for command key 3)

DoWhile Cond(*not &IN03)

– Utilizing built-ins

DoWhile Cond(%Sst(&Char 1 3) = VIN)

 The CL commands to run are delimited by the DoWhile and

associated EndDo commands

©2009 Bruce Vining Services LLC

DoUntil

 DoUntil processes a group of CL commands one or more times

until a condition is true (that is, the condition is tested after

running the Do group)

 The condition can be:

– An expression

DoUntil Cond(&Char = A)

– A logical CL variable

DoUntil Cond(&IN03)

– Utilizing built-ins

DoUntil Cond(%Sst(&Char 1 3) = VIN)

 The CL commands to run are delimited by the DoUntil and

associated EndDo commands

12/6/2009

8

©2009 Bruce Vining Services LLC

Leave

 Leave exits the active DoFor, DoWhile, or DoUntil CL command group(s).
– Leave CmdLbl(*CURRENT) causes the program to exit the current DoXXXXX group of

CL commands and run the CL command following the associated EndDo command.
This is the default.

– Leave CmdLbl(XYZ) causes the program to exit all active DoXXXXX groups of CL
commands at or imbedded within the DoXXXXX group labeled XYZ

XYZ: DoWhile Cond(&Char = A)

DoFor Var(&Counter) From(&Y) To(&X)

If Cond(&In03) Then(Leave CmdLbl(XYZ))

/* Do some work */

If Cond(&Status = ABCxxx) Then(Leave)

/* Do more work */

EndDo

/* Do even more work... */

EndDo

/* And some more... */

©2009 Bruce Vining Services LLC

Iterate

 Iterate immediately passes control to the associated EndDo command and retests the
condition of the associated DoFor, DoWhile, or DoUntil group

– Iterate CmdLbl(*CURRENT) causes the program to retest the current DoXXXXX
condition. This is the default.

– Iterate CmdLbl(XYZ) causes the program to retest the DoXXXXX condition labeled
XYZ

XYZ: DoWhile Cond(&Char = A)

DoFor Var(&Counter) From(&Y) To(&X)

If Cond(&In03) Then(Iterate CmdLbl(XYZ))

/* Do some work */

If Cond(&Status = ReTest) Then(Iterate)

If Cond(&Status = GetOut) Then(Leave)

/* Do more work */

EndDo

/* Do even more work... */

EndDo

/* And some more... */

12/6/2009

9

©2009 Bruce Vining Services LLC

Select Groups

 The Select command begins a control structure for
conditional processing

 The When command identifies a condition to be tested
– One or more When commands can be defined in a Select group

– When commands are tested in the order found in the Select group

– When commands are mutually exclusive. If one When condition
tests true then no additional When conditions are tested. So the
ordering of the When conditions can be very important

– Processing resumes after the associated EndSelect command

 The OtherWise command identifies the CL command to be
run if no When condition tests true
– OtherWise is not required in a Select group

– I highly recommend having one though

 The EndSelect command defines the end of the current
Select group

 Select groups can be nested

©2009 Bruce Vining Services LLC

Select Groups

(continued)

DoWhile Cond(&More_Input)

Select

When Cond(&In03) Then(Return)

When Cond(&In12) Then(Leave)

When Cond(&Action = Yes) Then(Do)

/* Do appropriate work */

EndDo

When Cond(&Action = Maybe) Then(Do)

/* Do appropriate work */

EndDo

When Cond((&Action = No) *And +

(&Stat *LT 10)) Then(Do)

/* Do appropriate work */

EndDo

When Cond((&Action = No) *And +

(&Stat *GE 10)) Then(Do)

/* Do appropriate work */

EndDo

OtherWise Cmd(Do)

/* Do appropriate work */

EndDo

EndSelect

/* Do appropriate work after all conditions handled */

EndDo

12/6/2009

10

©2009 Bruce Vining Services LLC

Select Groups

(continued)

 Select groups are my personal favorite (of this section of the session that is)

 Avoids nesting If/Else logic
DoWhile Cond(&More_Input)

If Cond(&In03) Then(Return)

If Cond(&In12) Then(Leave)

If Cond(&Action = Yes) Then(Do)

/* Do appropriate work */

EndDo

Else Cmd(If Cond(&Action = Maybe) Then(Do))

/* Do appropriate work */

EndDo

If Cond((&Action = No) *And +

(&Stat *LT 10)) Then(Do)

/* Do appropriate work */

EndDo

Else Cmd(…… Just more of the same……)

/* Do appropriate work after all the „If‟s */

EndDo

– Easier to read and follow (for me anyway)

 Avoids many GoTo commands to a common end of the If logic if trying to avoid nested
If/Else logic

 OtherWise makes sure I consider “what if”

 Easy to start utilizing

©2009 Bruce Vining Services LLC

Subroutines

 Subroutines provide for sharing of CL program code within a
procedure

 Subroutines cannot declare local variables

 Subroutines cannot be passed parameter values

 Subroutines can return a value to the caller of the subroutine

 Subroutines are physically found in the CL source program after the
main line commands and before the EndPgm command

Pgm

Dcls, DclFs, CopyRight, etc

. . .

CallSubr Subr(Common)

. . .

Return

Subr Subr(Common)

. . .

EndSubr

EndPgm

12/6/2009

11

©2009 Bruce Vining Services LLC

Subroutines

(continued)

 Call Subroutine (CallSubr)
CallSubr Subr(Common) RtnVal(&Value)

– Passes control to the specified subroutine

– Subr identifies the subroutine being called. The subroutine name cannot be a

CL variable

– RtnVal is an optional return value from the subroutine. If used the variable

must be a 4-byte signed integer

– A subroutine can call itself and/or be called by other subroutines

 Declare Processing Options (DclPrcOpt)
DclPrcOpt SubrStack(500)

– Declares how many nested subroutine calls can be supported

– Default number of nested subroutine calls is 99

– The supported range is from 20 to 9,999

– DclPrcOpt command must be located with other Dcl type commands

©2009 Bruce Vining Services LLC

Subroutines

(continued)

 Subroutine (Subr)
Subr Subr(Common)

– Identifies the start of a subroutine

– Must be after the main procedure and before the EndPgm command

 End Subroutine (EndSubr)
EndSubr RtnVal(&RtnCde)

– Identifies the end of a subroutine

– Control is immediately returned to CL command following the CallSubr command
which called the subroutine

– RtnVal is an optional return value from the subroutine. If used the variable must
be a 4-byte signed integer variable or an integer constant. The default value is 0

 Return from Subroutine (RtnSubr)

RtnSubr RtnVal(&RtnCde)

– Conceptually like Leave within a DoXXXXX group

– Control is immediately returned to CL command following the CallSubr command
which called the subroutine

– RtnVal is an optional return value from the subroutine. If used the variable must
be a 4-byte signed integer variable or an integer constant. The default value is 0

12/6/2009

12

©2009 Bruce Vining Services LLC
23

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Pointers –

Some Background

 Assume you have these DCLs in a program:

Dcl Var(&Text) Type(*Char) Len(20) Value('Some text')

Dcl Var(&More) Type(*Char) Len(5) Value('ABC')

Dcl Var(&OK) Type(*Lgl) Value('1')

Dcl Var(&Code) Type(*Char) Len(1) Value('X')

 Then in memory (activation group) there is conceptually:

????????Some~text~~~~~~~~~~~ABC~~1X????????????????

– With ? representing a variable value for another program that is active in your job

– And ~ is a blank within your program variable

 A pointer is a variable that is set to the address of your variable
within memory
– If the address of the first ? is decimal 12345678 then the address of

&Text is decimal 12345686 (12345678 + 8) as there are 8 ?s.

12/6/2009

13

©2009 Bruce Vining Services LLC

Pointers –

Background (continued)

 If you have ever called a program or run a command you
have used pointers without (necessarily) knowing it

Dcl Var(&Text) Type(*Char) Len(20) Value('Some text')

Call Pgm(ABC) Parm(&Text)

 Under the covers the Call command is passing a pointer to
the &Text variable (ie, the address of &Text)

Pgm Parm(&Text)

Dcl Var(&Text) Type(*Char) Len(20)

 Which is why:
– Variable names do not have to be the same across programs

– Variable definitions do not have to match (though they should)

– Changes made to &Text by program ABC are immediately reflected in the
calling program (as &Text really is in the calling programs memory)

©2009 Bruce Vining Services LLC

Pointer Variables

 Direct support for pointer variables with V5R4

Dcl Var(&MyPointer) Type(*Ptr)

 New optional Address keyword for Dcl command

Dcl Var(&Text) Type(*Char) Len(20) +
Value(„Some text‟)

Dcl Var(&MyPointer) Type(*Ptr) Address(&Text 5)

– Sets &MyPointer to the address of the 6th byte of CL variable &Text (the initial
„t‟ of „text‟)

– The offset (5 in the example) is optional and defaults to 0 (the start of the
variable) Note that offset is base 0

 Dcl command restrictions/considerations
– Len keyword is not valid if Type(*Ptr). Pointers are fixed at 16 bytes in length

– Value keyword is not valid if Type(*Ptr). The Address keyword is used to set
the initial address assigned to the pointer variable

12/6/2009

14

©2009 Bruce Vining Services LLC

Pointer Variables

(continued)

 New %Address built-in
– Can be abbreviated to %Addr

– Used to change the address stored in a pointer variable
ChgVar Var(&MyPointer) Value(%Addr(&Text))

– Used to test the address of a pointer variable
If Cond(&MyPointer) *NE %Addr(&Text) Then(+

ChgVar Var(&MyPointer) Value(%Addr(&Text)))

– *NULL special value support with V6R1. Used to set or test for the absence of a
valid address in a pointer variable

 New %Offset built-in
– Can be abbreviated to %Ofs

– Used to change the offset portion of a pointer variable

ChgVar Var(%ofs(&MyPointer)) Value(%ofs(&MyPointer) + 5)

– Used to get the offset portion of a pointer variable

Dcl Var(&MyOffset) Type(*Uint)

ChgVar Var(&MyOffset) Value(%ofs(&MyPointer))

©2009 Bruce Vining Services LLC

Based Variables

 A CL variable that has no storage allocated
– Variable is a ”view” of memory

– The view is applied to what ever memory an associated
pointer variable address points it to

Dcl Var(&Text) Type(*Char) Len(20) +
Value(„Some text‟)

Dcl Var(&MyPointer) Type(*Ptr) Address(&Text 5)

Dcl Var(&MyText) Type(*Char) Len(5) +
Stg(*Based) BasPtr(&MyPointer)

– The value of &MyText is ‟text ‟

– The based variable must be defined with Stg(*Based) and a
base pointer (BasPtr) specified

 When a CL program is called with parameters, the Program
(Pgm) Parm keyword effectively creates based variable
views of the calling programs memory

12/6/2009

15

©2009 Bruce Vining Services LLC

Pointers and Based

Variables

 Let‟s put some of what we‟ve learned to use

 The command LISTCMD displays a list of up to 50 words. The
command is defined as:

CMD PROMPT('Give Me a List')

PARM KWD(LIST) TYPE(*CHAR) LEN(10) MAX(50) +

PROMPT('List of something or other')

 LISTCMD is created with
CRTCMD CMD(LISTCMD) PGM(LISTCPP)

 LISTCMD is run with
LISTCMD LIST(CL IS A POWERFUL LANGUAGE)

 LISTCMD displays the list as
CL

IS

A

POWERFUL

LANGUAGE

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory and passed as a parameter to LISTCPP:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

xxxx is a 2-byte binary value holding the number of parameters passed in the List

 The Command Processing Program (CPP) declares
Pgm Parm(&List)

Dcl Var(&List) Type(*Char) Len(502)

Dcl Var(&List_Size) Type(*Dec) Len(5 0)

Dcl Var(&Counter) Type(*Dec) Len(5 0) Value(0)

Dcl Var(&Item_Dsp) Type(*Dec) Len(5 0) Value(3)

Dcl Var(&List_Item) Type(*Char) Len(10)

– &List is declared as Len(502). The maximum size of a Max(50) list of 10 byte list elements plus
2 bytes for the number of list entries

– &List_Size is used to hold the numeric version of how many list entries there are

– &Counter keeps track of how many list entries we have processed

– &Item_Dsp is the displacement into &List for 1st list entry

12/6/2009

16

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Get the number of list entries using the %Bin builtin and convert it to
a numeric value (&List_Size)

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Check if all list entires have been processed

– If not run the Do loop

– If all have been processed continue processing after the EndDo

12/6/2009

17

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Get the current list entry and move it to &List_Item

– Display the &List_Item

©2009 Bruce Vining Services LLC

LISTCMD CPP -

The old way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Increment &Item_Dsp by the size of one list entry so we are now
looking at the next possible entry

– Increment &Counter by 1 to reflect that we‟ve done one more list
entry

– Go to Again to check if there are more list entries to process

12/6/2009

18

©2009 Bruce Vining Services LLC

LISTCMD CPP –

Old way alternative

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic
ChgVar Var(&List_Size) Value(%Bin(&List 1 2))

Again: If Cond(&Counter *LT &List_Size) Then(Do)

SndPgmMsg Msg(%Sst(&List &Item_Dsp 10))

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

– Perform the %Sst built-in as part of the SndPgmMsg Msg expression

– The %Sst built-in is still moving the data under the covers

– Not as self-documenting as using &List_Item

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The Command Processing Program (CPP) declares
Pgm Parm(&List_Size)

Dcl Var(&List_Size) Type(*Int) Len(2)

Dcl Var(&List_Ptr) Type(*Ptr)

Dcl Var(&List_Item) Type(*Char) Stg(*Based) +

Len(10) BasPtr(&List_Ptr)

Dcl Var(&Counter) Type(*Int)

– &List_Size is declared as a 2-byte integer value
• No need to declare the 500 bytes of possible text

• No need to use %Bin to convert the value to a numeric variable

12/6/2009

19

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The Command Processing Program (CPP) declares
Pgm Parm(&List_Size)

Dcl Var(&List_Size) Type(*Int) Len(2)

Dcl Var(&List_Ptr) Type(*Ptr)

Dcl Var(&List_Item) Type(*Char) Stg(*Based) +

Len(10) BasPtr(&List_Ptr)

Dcl Var(&Counter) Type(*Int)

– &List_Item is declared as a 10-byte character view based on the
value of &List_Ptr

– &Counter continues to be a count of how many list entries have been
processed

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic

ChgVar Var(&List_Ptr) Value(%Addr(&List_Size))

ChgVar Var(%Ofs(&List_Ptr)) Value(%Ofs(&List_Ptr) + 2)

DoFor Var(&Counter) From(1) To(&List_Size)

SndPgmMsg Msg(&List_Item)

ChgVar Var(%Ofs(&List_Ptr)) +

Value(%Ofs(&List_Ptr) + 10)

EndDo

– Set &List_Ptr to the address of &List_Size (the parameter passed)

– Increment &List_Ptr by the size of the &List_Size variable (2 bytes) so that

the pointer now addresses the first list entry

12/6/2009

20

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic

ChgVar Var(&List_Ptr) Value(%Addr(&List_Size))

ChgVar Var(%Ofs(&List_Ptr)) Value(%Ofs(&List_Ptr) + 2)

DoFor Var(&Counter) From(1) To(&List_Size)

SndPgmMsg Msg(&List_Item)

ChgVar Var(%Ofs(&List_Ptr)) +

Value(%Ofs(&List_Ptr) + 10)

EndDo

– DoFor the number of list entries passed by the command (&List_Size)

– When all list entries are done continue processing after the EndDo

©2009 Bruce Vining Services LLC

LISTCMD CPP -

A new way

 How the List parameter is in memory:

xxCL~~~~~~~~IS~~~~~~~~A~~~~~~~~~POWERFUL~~LANGUAGE~~

 The CPP logic

ChgVar Var(&List_Ptr) Value(%Addr(&List_Size))

ChgVar Var(%Ofs(&List_Ptr)) Value(%Ofs(&List_Ptr) + 2)

DoFor Var(&Counter) From(1) To(&List_Size)

SndPgmMsg Msg(&List_Item)

ChgVar Var(%Ofs(&List_Ptr)) +

Value(%Ofs(&List_Ptr) + 10)

EndDo

– Display the &List_Item with no movement of the data

– Increment &List_Ptr by the size of one list entry so we are now viewing at the

next possible entry

– No need to increment &Counter as the DoFor takes care of that for us

12/6/2009

21

©2009 Bruce Vining Services LLC

Pointers and Based

Variables

 Pointers and based variables are most likely not something

you will use everyday

 They are however an important tool that you should add to

your programming toolbox.

 When appropriately used, they can provide:

– Excellent performance

• No data movement as there is with ChgVar or %Sst

– Easier reviewing of the code

• No substring built-ins for instance to figure out

– Can be more self documenting (if you are careful about

variable names)

©2009 Bruce Vining Services LLC

Comparison

 Old way
Again: If Cond(&Counter *LT &List_Size) Then(Do)

ChgVar Var(&List_Item) +

Value(%Sst(&List &Item_Dsp 10))

SndPgmMsg Msg(&List_Item)

ChgVar Var(&Item_Dsp) Value(&Item_Dsp + 10)

ChgVar Var(&Counter) Value(&Counter + 1)

GoTo CmdLbl(Again)

EndDo

 New way with DoFor and based variables
DoFor Var(&Counter) From(1) To(&List_Size)

SndPgmMsg Msg(&List_Item)

ChgVar Var(%Ofs(&List_Ptr)) +

Value(%Ofs(&List_Ptr) + 10)

EndDo

 Let‟s see: Runs faster, less code to type, easy to read...

And incidently, changing the list from 50 to 300 ”words” requires
no change to the CPP – just the PARM definition!
I know which way I would go

12/6/2009

22

©2009 Bruce Vining Services LLC
43

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Structures

 Direct support for structures with V5R4
Dcl Var(&MyStruct) Type(*Char) Len(100)

Dcl Var(&A_SubField) Type(*Char) Len(10) +

Stg(*Defined) DefVar(&MyStruct 51)

 Essentially the ability to name a portion of a previously

defined variable

 Storage (Stg) *Defined indicates that no additional storage

for the CL variable is to be allocated. The storage has

been previously allocated

 Defined on variable (DefVar) identifies the CL variable

being defined on. Position identifies the starting position of

the subfield within the defined on variable. Default is 1
– &A_SubField is defined as a *Char variable that starts at position 51 of the

variable &MyStruct and has a length of 10 bytes. Note that this is base 1

12/6/2009

23

©2009 Bruce Vining Services LLC

Structures

(continued)

 The subfield does not need to be of the same data type
Dcl Var(&MyStruct) Type(*Char) Len(100)

Dcl Var(&Integer) Type(*Int) +

Stg(*Defined) DefVar(&MyStruct 5)

– No need to use %Bin built-in to extract a binary field

– Can use a meaningful name for the subfield

 A *Char subfield is directly accessible (as are other types

such as *Ptr)
Dcl Var(&MyStruct) Type(*Char) Len(100)

Dcl Var(&PhoneNbr) Type(*Char) Len(10) +

Stg(*Defined) DefVar(&MyStruct 81)

– No need to use %Sst built-in to extract the field

– Can use a meaningful name for subfield

 DefVar CL variable can be Stg(*Based)

 Great for parameters when working with other user

programs or system APIs

©2009 Bruce Vining Services LLC

Structures

(continued)

 RPG
dMyStruct ds

d Char_Fld_1 10

d Int_Fld_1 10i 0

d Char_Fld_2 1

d Int_Fld_2 10i 0

d Int_Fld_3 10i 0

 COBOL
01 MY-STRUCT.

05 CHAR-FLD-1 PIC X(00010).

05 INT-FLD-1 PIC S9(00009) BINARY.

05 CHAR-FLD-2 PIC X(00001).

05 INT-FLD-2 PIC S9(00009) BINARY.

05 INT-FLD-3 PIC S9(00009) BINARY.

12/6/2009

24

©2009 Bruce Vining Services LLC

Structures

(continued)

 Traditional CL approach
Dcl Var(&MyStruct) Type(*Char) Len(23)

Dcl Var(&Char_Fld_1) Type(*Char) Len(10)

Dcl Var(&Int_Fld_1) Type(*Dec) Len(10 0)

Dcl Var(&Char_Fld_2) Type(*Char) Len(1)

Dcl Var(&Int_Fld_2) Type(*Dec) Len(10 0)

Dcl Var(&Int_Fld_3) Type(*Dec) Len(10 0)

ChgVar Var(&Char_Fld_1) Value(%Sst(&MyStruct 1 10))

ChgVar Var(&Int_Fld_1) Value(%Bin(&MyStruct 11 4))

ChgVar Var(&Char_Fld_2) Value(%Sst(&MyStruct 15 1))

ChgVar Var(&Int_Fld_2) Value(%Bin(&MyStruct 16 4))

ChgVar Var(&Int_Fld_3) Value(%Bin(&MyStruct 20 4))

 Define appropriate fields and move the data to them

©2009 Bruce Vining Services LLC

Structures

(continued)

 CL with Stg(*Defined)
Dcl Var(&MyStruct) Type(*Char) Len(23)

Dcl Var(&Char_Fld_1) Type(*Char) Stg(*Defined) +

Len(10) DefVar(&MyStruct)

Dcl Var(&Int_Fld_1) Type(*Int) Stg(*Defined)

DefVar(&MyStruct 11)

Dcl Var(&Char_Fld_2) Type(*Char) Stg(*Defined) +

Len(1) DefVar(&MyStruct 15)

Dcl Var(&Int_Fld_2) Type(*Int) Stg(*Defined) +

DefVar(&MyStruct 16)

Dcl Var(&Int_Fld_3) Type(*Int) Stg(*Defined) +

DefVar(&MyStruct 20)

 Define the fields and you‟re done. The data is ready to go.

 Care to guess which performs better?

12/6/2009

25

©2009 Bruce Vining Services LLC
49

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compiler Options

 Wrap-up

©2009 Bruce Vining Services LLC

Compiler Options

 Include CL Source (Include) command for V6R1

Include SrcMbr(MyInclude)

 Imbeds another source member within the compiled source

 Optional SrcFile keyword to identify source file the member

is in

– Default is *IncFile – use the source file specified for the new

CRTCLPGM or CRTBNDCL IncFile keyword

– Default for IncFile keyword is to use the source file being compiled

from

 Can be used to imbed declare type commands and/or

commands to be run at run-time

 Does not support imbedded Include commands

12/6/2009

26

©2009 Bruce Vining Services LLC

Compiler Options

 Declare Processing Options (DclPrcOpt) command in the CL
source member can define additional compiler processing options
with V6R1

DclPrcOpt UsrPrf(*Owner) BndDir(MyBndDir) etc.

 Options supported:
ActGrp Log

AlwRtvSrc SrtSeq

Aut StgMdl

BndDir Text

BndSrvPgm UsrPrf

DftActGrp

LangID

 DclPrcOpt value takes precedence over Crt command

 Avoid lengthy problem determination due to a program being
compiled with the wrong options

©2009 Bruce Vining Services LLC
52

What We‟ll Cover …

 Integers

 Use Multiple Files in One Program

 Programming Constructs

 Pointers and Based Variables

 Structures

 Compile Options

 Wrap-up

12/6/2009

27

©2009 Bruce Vining Services LLC

Additional Resources

 IBM i5/OS Information Center
– V5R3: http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp

– V5R4: http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

– V6R1: http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/index.jsp

 Many examples in my CL-related articles
– http://www.brucevining.com/

– Select Publications

– Select Control Language (CL)

©2009 Bruce Vining Services LLC
54

Some Key Points

to Take Home

 CL continues to grow more flexible and powerful

 Recent CL enhancements can improve both
your productivity and system performance – a
true win/win situation

– Stg(*Defined)

– Stg(*Based)

– DoFor, DoWhile, DoUntil

– DclPrcOpt – avoids mistakes when compiling…

 CL will continue to grow in the future

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/index.jsp
http://www.brucevining.com/

12/6/2009

28

©2009 Bruce Vining Services LLC
55

Future Possible

Enhancements

 Support for 8-byte *Int and *Uint data types

 Encrypted source debug listing support

 RtvCLSrc support for ILE CL

 Higher precision *Dec support

 Arrays

 Date, Time, and Timestamp support

 Floating point support

 But NO Guarantees

©2008 Bruce Vining Services LLC
56 56

Last Chance

Before the Break

How to contact me:

Bruce Vining

bvining@brucevining.com

12/6/2009

29

©2009 Bruce Vining Services LLC

PowerCL:

eXtreme CL (XCL)

 Enhanced Productivity for CL Developers

 Provides Commands Such As:
– Character Variable commands

• Upper Case (UPRCASE), Lower Case (LWRCASE)

• Find String (FNDSTR), Find and Replace String (FNDRPLSTR)

• Change CCSID (CHGTOCCSID) and more

– Date, Time and Timestamp commands
• Change Date (CHGDATXCL), Change Time (CHGTIMXCL), Change

Timestamp (CHTTSXCL)

• Retrieve Duration (RTVDURXCL) and more

– Data Queue commands
• Send, Receive, and Remove Entries (SNDDTAQE, RCVDTAQE,

RMVDTAQE)

• Display Entries (DSPDTAQE) and more

– User Space commands, Memory Management commands, Message
Monitoring commands

 Requires V5R4 or later

 Support for ILE and OPM Environments

 For more information- http://www.brucevining.com/

©2009 Bruce Vining Services LLC

PowerCL:

CL for Files (CLF)

 CL File Support
– Externally described and Program described

– Database – Physical, Logical, DDM, SQL Views
• Read/Write/Update/Delete

• Arrival Sequence or Indexed Access

• Commitment Control

• Null Fields, Variable-length fields

– Display files
• Subfiles

• Separate Indicator Area

– Printer files

– Commands such as ReadRcdCLF and CHAIN; PosDBFCLF and
SETLL; WrtReadCLF and EXFMT

 Multiple file support is more flexible than standard CL

 Superset of RPG/COBOL/C capabilities

 Requires V5R4 or later

 Support for ILE and OPM Environments

 For more information- http://www.powercl.com/

