SERVICES LLC. .-
Integrated solutions F{eieit-] System 1 user community

CL - The Story Continues

Gateway/400 Group: December 2009
Bruce Vining
bvining@brucevining.com

© 2009 Bruce Vining Services, LLC All rights reserved

H H BRUCE SERVICES LLc —
In This Session
l l LR

= We will review some of the
enhancements that have b
during the last three releas

= By the end of this session, attendees wi
able to:

— Use new data types such as integer and pointer
Use multiple files in one program
Use programming constructs such as:
* DoFor, DoWhile, DoUntil
» Subroutines
Use structures and based variables
Use new compiler options

©2009 Bruce Vining Services LLC

12/6/2009

12/6/2009

What We'll Cover ... =g |emm—

Integers

Use Multiple Files in
Programming Constructs

= Pointers and Based Variables
= Structures
= Compiler Options
= Wrap-up
3 ©2009 Bruce Vining Services LLC
Integers “‘L@"“‘ [T

= Direct support for signed and unsig
— Dell Var (&Signed)
— Decl Var (&Unsigned)

= Much nicer than using the previous

— The “old” way:
Dcl Var (&Char) Type (*Char) Len (4)
ChgVar Var (%Bin (&Char)) Value (10)

— The “new” way:
Dcl Var (&Signed) Type (*Int)
ChgVar Var (&Signed) Value (10)

= Much more productive debug assistance also
— Eval &Char displays “blobs”
— Eval &Char:x displays 0000000A
— Eval &Signed displays 10

©2009 Bruce Vining Services LLC

Integers (continued) m—w“ o T—

= |ntegers can be 2 or 4-bytes |

— With 2-byte integers (Len(2))
 Signed values from -32,768 to 3
* Unsigned values can be from O t

— With 4-byte integers (Len(4))
 Signed values from -2,147,483,648 to 2,147,483,647
* Unsigned values from 0 to 4,294,967,295

— The default is a length of 4 bytes

= V5R4 integer support on DclF command and
Declare Binary Fields (DcIBinFId) keyword
— DclF File(VC2Emp) DclBinFld(*Int)

— For compatibility DclBinFId defaults to *Dec

©2009 Bruce Vining Services LLC

[

What We'll Cover ... &wm

Integers

Programming Constructs
Pointers and Based Variables
Structures

Compiler Options

Wrap-up

©2009 Bruce Vining Services LLC

12/6/2009

Multiple File Support ﬂ@” e

Multiple File Support . ®
(continued)

CL programs and procedures can h
with V5R3

— The files can be the same file or diff

When more than 1 file is declared in
— An open identifier (OpnID) is require
* DclF File (VC2Emp) OpnID (X)

— OpnID(*None) can be used for at most one file

OpnID is supported with:

Declare File (DclF) Receive File (RcvF)
End Receive File (EndRcv) Wait (Wait)
Send File (SndF) Send and Receive File (SndRcvF)

New Close (Close) command in V6R1 supports OpnID and can
be used to close data base files (not display files)

— File will be re-opened on first RevF command being run

©2009 Bruce Vining Services LLC

T el for the System i user community

OpnID is carried over to CL varia

DclF File (VC2Emp) Opn
DDS for VC2EMP data base file
R EMPRCD
EMPNBR 5 0 TEXT ('E
EMPSTS 1 TEXT ('E
EMPFNAME 40 TEXT ('Employee First Name')
EMPDPT 2 TEXT ('Employee Department')
CL variables declared as:
&X_EMPNBR *DEC 5 0
&X_EMPSTS *CHAR
&X_EMPFNAME *CHAR 40
&X_EMPDPT *CHAR 2
Consideration:

— Good: variables are unique per file

— Bad: variables are unique per file
ChgVar Var (&X EMPNBR) Value (&Y EMPNBR)

©2009 Bruce Vining Services LLC

12/6/2009

What We'll Cover ... =g |emm—

= Integers
= Use Multiple Files in

l

=

= Programming Constr

= Pointers and Based Variables
= Structures
= Compiler Options

= Wrap-up
9 ©2009 Bruce Vining Services LLC
programming %wszm“ - [PPSR cox the System i user commusity
Constructs '

= Additional DO Options with

DoFor
DoWhile
DouUntil
Leave
Iterate

= Select Processing with V5R3

Select

— When

Otherwise
EndSelect

= Subroutines with V5R4

©2009 Bruce Vining Services LLC

12/6/2009

12/6/2009

[)()[:()r Y o e yster uscr commmanity

= DoFor processes a group of CL co
DoFor Var (&Counter) Fro

= Var(&Counter) is used as the contr
— Variable must be an *Int or *Uint dataty,

= From(&Y) is used to initially set the value of the control variable
— Can be an integer constant
DoFor Var (&Counter) From(l) To(&X) By (1)

— Can be an *Int or *Uint datatype
DoFor Var (&Counter) From(&Y) To(&X) By (1)

— Can be an expression resulting in an integer value
DoFor Var (&Counter) From (&Y - &Z) To(&X) By (1)

©2009 Bruce Vining Services LLC

BRUCE’ SERVICES LLC. " o
[T o e st e commaity

= To(&XR is used to determine the final
variable
— Can be an integer constant
DoFor Var (&Counter) From (&

DoFor (continued)

— Can be an *Int or *Uint datatype
DoFor Var (&Counter) From (&

— Can be an expression resulting in an integer value
DoFor Var (&Counter) From(&Y) To(&X + &Z) By(1)

= By(1) defines the value to increment Var(&Counter) on each loop
— By() is optional and defaults to 1
— By() can be any positive or negative integer value
— By() must be a constant (no variables, no expressions)

= To(&X) value is tested prior to each loop with the control variable
— If By() is 0 or positive and Var(&Counter) is *LE To(&X) the loop will be run
— If By() is negative and Var(&Counter) is *GE To(&X) the loop will be run

— The CL commands to run are delimited by the DoFor and associated EndDo
commands

©2009 Bruce Vining Services LLC

l

H BRUCE SERVICESLLC .
o l e T for the System i user community

= DoWhile processes a group of CL
while a condition is true (that is, t
running the Do group)

= The condition can be:
— An expression
DoWhile Cond (&Char = A)

— Alogical CL variable (for instance &In03 for command key 3)
DoWhile Cond (*not &INO03)

— Utilizing built-ins
DoWhile Cond (%$Sst (&Char 1 3) = VIN)

= The CL commands to run are delimited by the DoWhile and
associated EndDo commands

©2009 Bruce Vining Services LLC

H BRUCE SERVICESLLC _—
o n L Ty for the System i user community

= DoUntil processes a group of CL
until a condition is true (that is, th
running the Do group)

= The condition can be:
— An expression
DoUntil Cond (&Char = A)

— Alogical CL variable
DoUntil Cond (&INO3)

— Utilizing built-ins
DoUntil Cond (%Sst (&Char 1 3) = VIN)

= The CL commands to run are delimited by the DoUntil and
associated EndDo commands

©2009 Bruce Vining Services LLC

12/6/2009

|

o~ TR —-

Leave

= Leave exits the active DoFor, DoWhile,

— Leave CmdLbI(*CURRENT) causes the
CL commands and run the CL comman
This is the default.

— Leave CmdLbl(XYZ) causes the program
commands at or imbedded within the Do

XYZ: DoWhile Cond (&Char = A)
DoFor Var (&Counter) F
If Cond(&In03)
/* Do some work */
If Cond(&Status = ABCx Then (Leave)
/* Do more work *
EndDo

/* Do even

EndDo
/* And some more... */

©2009 Bruce Vining Services LLC

SERVICES LLC. " o
erate [T e e st e commmanity

= |terate immediately passes control to the

condition of the associated DoFor, DoWhil

— lterate CmdLbl(*CURRENT) causes t
condition. This Is the default.

— Iterate CmdLbl(XYZ) causes the progr:
XYz

XYZ: DoWpile Cond (&Char = A)
DoFRr Var (&Counter) From
If Cond(&In03) The

Do some work */

/*

erate)

If Cond(&Status = ReTes#f Then (I
f Cond(&Status 25

/* And some more... */

©2009 Bruce Vining Services LLC

12/6/2009

12/6/2009

BRUCE SERVICESLLC o &
[e s st s commeity

= The Select command begins a ¢
conditional processing

= The When command identifies a
— One or more When commands can
— When commands are tested in the o

— When commands are mutually exclusive. If one When condition
tests true then no additional When conditions are tested. So the
ordering of the When conditions can be very important

— Processing resumes after the associated EndSelect command
= The OtherWise command identifies the CL command to be
run if no When condition tests true
— OtherWise is not required in a Select group
— | highly recommend having one though
= The EndSelect command defines the end of the current
Select group

= Select groups can be nested

Select Groups

©2009 Bruce Vining Services LLC

Sel ec‘t G rou ps %w“m“ - for the System i user community
(continued)
DoWhile Cond (&More_Input)
Select

When Cond(&In03) Then (Return)
When Cond(&Inl2) Then (Leave)
When Cond(&Action = Yes) Then (D
/* Do appropriate work */
EndDo
When Cond(&Action = Maybe) Then
/* Do appropriate work */
EndDo
When Cond((&Action = No) *And +
(&Stat *LT 10)) Then (Do)
/* Do appropriate work */
EndDo
When Cond((&Action = No) *And +
(&Stat *GE 10)) Then (Do)
/* Do appropriate work */
EndDo
OtherWise Cmd (Do)
/* Do appropriate work */
EndDo
EndSelect
/* Do appropriate work after all conditions handled */
EndDo

©2009 Bruce Vining Services LLC

- Select Groups
(continued)

|

—d

BRUCE SERVICESLLLC. o P
IR e e s coramanty

Select groups are my personal favorite (of

Avoids nesting If/Else logic
DoWhile Cond (&More_Input)
If Cond(&In03) Then (Return)
If Cond(&Inl2) Then (Leave)
If Cond(&Action = Yes) Then (Do)
/* Do appropriate work */
EndDo
Else Cmd(If Cond(&Action = Maybe
/* Do appropriate work
EndDo
If Cond((&Action = No) *And +
(&Stat *LT 10)) Then (Do)
/* Do appropriate work */
EndDo
Else Cmd(.... Just more of the same...)
/* Do appropriate work after all the ‘If’s */
EndDo

— Easier to read and follow (for me anyway)

Avoids many GoTo commands to a common end of the If logic if trying to avoid nested
If/Else logic

OtherWise makes sure | consider “what if”
Easy to start utilizing

©2009 Bruce Vining Services LLC

Subroutines %wsmm‘ [iogmed soion T L

Subroutines provide for sharing of
procedure

Subroutines cannot declare local v
Subroutines cannot be passed par.
Subroutines can return a value to t

Subroutines are physically found i
main line commands and before th

Pgm
Dcls, DclFs, CopyRight, etc

CallSubr Subr (Common)
Return
Subr Subr (Common)
EndSubr

EndPgm

©2009 Bruce Vining Services LLC

12/6/2009

10

Subroutines
(continued)

= Call Subroutine (CallSubr)
CallSubr Subr (Common) RtnVa
— Passes control to the specified subroutine

— Subr identifies the subroutine being called
CL variable

— RtnVal is an optional return value from the subroutine. If use
must be a 4-byte signed integer
— A subroutine can call itself and/or be called by other subroutines
= Declare Processing Options (DclPrcOpt)
DclPrcOpt SubrStack(500)
Declares how many nested subroutine calls can be supported
Default number of nested subroutine calls is 99

The supported range is from 20 to 9,999
DclPrcOpt command must be located with other Dcl type commands

©2009 Bruce Vining Services LLC

BRUCE SERVICESLLC o &
[e s st s commeity

L]
Subroutines &wm —
vt Sytem s cormanity

(continued)
= Subroutine (Subr)
Subr Subr (Common)

— ldentifies the start of a subroutine
— Must be after the main procedure and before

= End Subroutine (EndSubr)
EndSubr RtnVal (&RtnCde)
— Identifies the end of a subroutine

— Control is immediately returned to CL command following the CallSubr command
which called the subroutine

— RtnValis an optional return value from the subroutine. If used the variable must
be a 4-byte signed integer variable or an integer constant. The default value is 0
= Return from Subroutine (RtnSubr)

RtnSubr RtnVal (&RtnCde)
— Conceptually like Leave within a DoXXXXX group

— Control is immediately returned to CL command following the CallSubr command
which called the subroutine

— RtnValis an optional return value from the subroutine. If used the variable must
be a 4-byte signed integer variable or an integer constant. The default value is 0

©2009 Bruce Vining Services LLC

12/6/2009

11

What We'll Cover ... =g |emm—

12/6/2009

Integers
Use Multiple Files in O
Programming Constructs

Pointers and Based Variables

Pointers —
Some Background

Structures
Compiler Options
Wrap-up

23 ©2009 Bruce Vining Services LLC

BRUCE’ SERVICES LLC. " o
fr e System s cormmiy

Assume you have these DCLs in a p

Dcl Var (&Text) Type (*Char) Len (2
Dcl Var (&More) Type (*Char) Len (5
Dcl Var (&0OK) Type (*Lgl)

Dcl Var (&Code) Type (*Char) Len (1

Then in memory (activation group) there is conceptually:

— With ? representing a variable value for another program that is active in your job
— And ~ is a blank within your program variable

A pointer is a variable that is set to the address of your variable

within memory

— If the address of the first ? is decimal 12345678 then the address of
&Text is decimal 12345686 (12345678 + 8) as there are 8 ?s.

©2009 Bruce Vining Services LLC

12

12/6/2009

Pointers —
Background (continued)

BRUCE SERVICESLLC o &
[e s st s commeity

= |f you have ever called a program
have used pointers without (nece

Dcl Var (&Text) Type (*Char) Len (2
Call Pgm(ABC) Parm(&Text)

= Under the covers the Call command is passing a pointer to
the &Text variable (ie, the address of &Text)

Pgm Parm(&Text)
Dcl Var (&Text) Type (*Char) Len(20)

= Which is why:
— Variable names do not have to be the same across programs
— Variable definitions do not have to match (though they should)
— Changes made to &Text by program ABC are immediately reflected in the
calling program (as &Text really is in the calling programs memory)

©2009 Bruce Vining Services LLC

Pointer Variables

BRUCE’ SERVICES LLC. " o
fr e System s cormmiy

= Direct support for pointer variable

Dcl Var (&MyPointer) Type (*

= New optional Address keyword fo

Dcl Var (&Text) Type (*Char) Len(20) +
Value (‘Some text’)
Dcl Var (&MyPointer) Type (*Ptr) Address (&Text 5)

‘t’ of ‘text’)
— The offset (5 in the example) is optional and defaults to 0 (the start of the
Caution variable) Note that offset is base 0

— Sets &MyPointer to the address of the 6t byte of CL variable &Text (the initial

= Dcl command restrictions/considerations
— Len keyword is not valid if Type(*Ptr). Pointers are fixed at 16 bytes in length

— Value keyword is not valid if Tyﬁe(*Ptr). The Address keyword is used to set
the initial address assigned to the pointer variable

©2009 Bruce Vining Services LLC

13

12/6/2009

Pointer Variables
(continued)

= New %Address built-in

%wsmﬁm T o the System i ser comvmunity
— Can be abbreviated to %Addr

— Used to change the address stored in a poin
ChgVar Var (&MyPointer) Value ($Ad

— Used to test the address of a pointer variabl
If Cond(&MyPointer) *NE $Addr (&Te
ChgVar Var (&MyPointer) Value ($Addr (&Text)))

— *NULL special value support with V6R1. Used to set or test for the absence of a
valid address in a pointer variable

= New %Offset built-in
Can be abbreviated to %0fs
— Used to change the offset portion of a pointer variable
ChgVar Var (%ofs (&MyPointer)) Value (%0fs (&MyPointer) + 5)

— Used to get the offset portion of a pointer variable

Dcl Var (&MyOffset) Type (*Uint)
ChgVar Var (&MyOffset) Value (%ofs (&MyPointer))

©2009 Bruce Vining Services LLC

Based Variables

BRUCE’ SERVICES LLC. " o
fr e System s cormmiy

= A CL variable that has no stor
— Variable is a "view” of memory

— The view is applied to what ev
pointer variable address point

Dcl Var (&Text) Type (*Char) Len(20) +
Value (‘Some text’)

Dcl Var (&MyPointer) Type (*Ptr) Address (&Text 5)

Dcl Var (&MyText) Type (*Char) Len(5) +
Stg (*Based) BasPtr (&MyPointer)

— The value of &MyText is 'text’

— The based variable must be defined with Stg(*Based) and a
base pointer (BasPtr) specified

= When a CL program is called with parameters, the Program
(Pgm) Parm ke Iyword effectively creates based variable
views of the calling programs memory

©2009 Bruce Vining Services LLC

14

" Pointers and Based .
Variables

|

‘ I
R

LISTCMD CPP - I inin g
The old way

Pt ety for the System i user community

Let's put some of what we’ve lea

The command LISTCMD display:
command is defined as:

CMD PROMPT ('Give Me a List')
PARM KWD(LIST) TYPE(*CHAR) L
PROMPT ('List of somet

LISTCMD is created with

CRTCMD CMD (LISTCMD) PGM(LISTCPP)

LISTCMD is run with

LISTCMD LIST(CL IS A POWERFUL LANGUAGE)

LISTCMD displays the list as
CL

IS

A

POWERFUL

LANGUAGE

©2009 Bruce Vining Services LLC

[reormetronio T —

How the List parameter is in memory and p:

XXXX is a 2-byte binary value holding the numb:

The Command Processing Program (CPP)

Pgm Parm(&List)

Dcl Var (&List) Type (*Char) Len (502)

Dcl Var (&List_Size) Type(*Dec) Len(5 0)

Dcl Var (&Counter) Type (*Dec) Len(5 0) Value(0)
Dcl Var (&Item Dsp) Type(*Dec) Len(5 0) Value(3)
Dcl Var (¢List_Item) Type (*Char) Len(10)

— &Listis declared as Len(502). The maximum size of a Max(50) list of 10 byte list elements plus
2 bytes for the number of list entries

— &List_Size is used to hold the numeric version of how many list entries there are

— &Counter keeps track of how many list entries we have processed

— <em_Dsp is the displacement into &List for 1st list entry

©2009 Bruce Vining Services LLC

12/6/2009

15

12/6/2009

" LISTCMD CPP -
The old way

Pt ety for the System i user community

= How the List parameter is in memo

= The CPP logic
ChgVar Var (&List
Again: If Cond (&Cou

Value (%Sst (¢List &Item Dsp 10))
SndPgmMsg Msg (&List_Ttem)
ChgVar Var (&Item Dsp) Value(&Item Dsp + 10)
ChgVar Var (&Counter) Value (&Counter + 1)
GoTo CmdLbl (Again)
EndDo

— Get the number of list entries using the %Bin builtin and convert it to
a numeric value (&List_Size)

©2009 Bruce Vining Services LLC

[

P el for the System i user community

|
LISTCMD CPP - M@MW
The old way

= How the List parameter is in memo

= The CPP logic

ChgVar Var (&List
Again: If Cond (&Co
ChgVar V.

Value (%Sst (&List &Item Dsp 10))
SndPgmMsg Msg (&List_Item)
ChgVar Var (&Item Dsp) Value(&Item Dsp + 10)
ChgVar Var (&Counter) Value (&Counter + 1)
GoTo CmdLbl (Again)
EndDo

— Check if all list entires have been processed
— If not run the Do loop
— If all have been processed continue processing after the EndDo

©2009 Bruce Vining Services LLC

[

16

LISTCMD CPP -
The old way

P el fox the System i user community

= How the List parameter is in memo

= The CPP logic
ChgVar Var (&List
Again: If Cond (&Cou
ChgVar V. .
Value ($Sst (&List &Item Dsp 10))
SndPgmMsg Msg(&List Item)
ChgVar Var (&Item Dsp) Value(&Item Dsp + 10)
ChgVar Var (&Counter) Value (&Counter + 1)
GoTo CmdLbl (Again)
EndDo

— Get the current list entry and move it to &List_Item
— Display the &List_Item

©2009 Bruce Vining Services LLC

—
|
LISTCMD CPP K BRUCE’ SERVICES LLC. 3 o
Th Id for the System i user community
= How the List parameter is in memo
XXCL~~~~ v~~~
= The CPP logic
ChgVar Var (&List
Again: If Cond (&Cou
ChgVar V. _
Value (%Sst (&List &Item Dsp 10))
SndPgmMsg Msg (&List_Item)
ChgVar Var (&Item Dsp) Value(&Item Dsp + 10)
ChgVar Var (&Counter) Value (&Counter + 1)
GoTo CmdLbl (Again)
EndDo
— Increment <em_Dsp by the size of one list entry so we are now
looking at the next possible entry
— Increment &Counter by 1 to reflect that we’ve done one more list
entry
— Go to Again to check if there are more list entries to process
©2009 Bruce Vining Services LLC
—

12/6/2009

17

12/6/2009

B iy m—
Old way alternative . y‘

= How the List parameter is in memo

XX Gl TSt D~~~ PO!
= The CPP logic
ChgVar Var (&List .
Again: If Cond (&Counter *LT &List Size) Then (Do)

SndPgmMsg Msg(%Sst(&List &Item Dsp 10))
ChgVar Var (&Item Dsp) Value(&Item Dsp + 10)
ChgVar Var (&Counter) Value (&Counter + 1)
GoTo CmdLbl (Again)

EndDo

— Perform the %Sst built-in as part of the SndPgmMsg Msg expression
— The %Sst built-in is still moving the data under the covers
— Not as self-documenting as using &List_ltem

©2009 Bruce Vining Services LLC

|

= The Command Processing Progr
Pgm Parm(&List_Size)

Dcl Var (¢List_Size) Type(*Int) Len(2)

Dcl Var (&List_Ptr) Type (*Ptr)
Dcl Var (&List_Item) Type (*Char) Stg(*Based) +
Len (10) BasPtr (&List Ptr)

Dcl Var (&Counter) Type (*Int)
— &List Size is declared as a 2-byte integer value
* No need to declare the 500 bytes of possible text
* No need to use %Bin to convert the value to a numeric variable

©2009 Bruce Vining Services LLC

|
LISTCMD CPP - %m —
| AR L LU for the DYSTEM § user community
A new way
= How the List parameter is in me
XRCL o~~~ IS~~~) NONEN
—d

18

|
LISTCMD CPP - %M e P—

A new way

= How the List parameter is in memo

= The Command Processing Progral

Pgm
Dcl

Dcl
Dcl

Dcl

Parm(&List_Size)
Var (¢List_Size) Typ

Var (&List Ptr) Type (*Ptr)
Var (sList Item) Type (*Char) Stg(*Based) +
Len (10) BasPtr(&List Ptr)

Var (&Counter) Type (*Int)

— &List_ltem is declared as a 10-byte character view based on the
value of &List_Ptr

— &Counter continues to be a count of how many list entries have been
processed

|

" LISTCMD CPP -

©2009 Bruce Vining Services LLC

BRUCE’ SERVICES LLC. 3 o
[reormetronio T —

SndPgmMsg Msg (&List_ Item)
ChgVar Var (%$0fs (&List Ptr)) +

Value (%0fs (&List Ptr) + 10)
EndDo

— Set &List_Ptrto the address of &List_Size (the parameter passed)

— Increment &List_Ptr by the size of the &List_Size variable (2 bytes) so that
the pointer now addresses the first list entry

[

A new way
= How the List parameter is in memo
XXCL~~~~ v~~~
= The CPP logic
ChgVar Var (&¢List Ptr) Val
ChgVar Var (%0fs (¢List Ptr)) Value (%0fs(&List_Ptr) + 2)
DoFor Var (&Counter) From(l) To (&List Size)

©2009 Bruce Vining Services LLC

12/6/2009

19

" LISTCMD CPP -
A new way

Pt ety for the System i user community

= How the List parameter is in memo

= The CPP logic

ChgVar Var (¢List Ptr) Value o
ChgVar Var ($0fs (&List Ptr)) Value (%0fs(&List Ptr) + 2)
DoFor Var (&Counter) From(l) To(&List Size)

SndPgmMsg Msg (&List Ttem)
ChgVar Var (%0fs (&List Ptr)) +
Value (50fs (&List_Ptr) + 10)
EndDo
— DoFor the number of list entries passed by the command (&List_Size)
— When all list entries are done continue processing after the EndDo

©2009 Bruce Vining Services LLC

[

P el for the System i user community

|
LISTCMD CPP - wwm
A new way

= How the List parameter is in memo

= The CPP logic

ChgVar Var (&List_Ptr) Value »
ChgVar Var (50fs (&List_Ptr)) Value (%0fs(&List Ptr) + 2)
DoFor Var (&Counter) From(l) To(&List Size)

SndPgmMsg Msg (&List_Item)
ChgVar Var (%0fs (&List Ptr)) +
Value (%0fs (&List Ptr) + 10)
EndDo
— Display the &List_Item with no movement of the data
— Increment &List_Ptr by the size of one list entry so we are now viewing at the
next possible entry

— No need to increment &Counter as the DoFor takes care of that for us
©2009 Bruce Vining Services LLC

[

12/6/2009

20

Pointers and Based
Variables

BRUCE SERVICESLLC o &
[e s st s commeity

Pointers and based variables ar:
you will use everyday

They are however an important t
your programming toolbox.

When appropriately used, they can provide:

— Excellent performance

* No data movement as there is with ChgVar or %Sst
— Easier reviewing of the code

» No substring built-ins for instance to figure out

— Can be more self documenting (if you are careful about
variable names)

©2009 Bruce Vining Services LLC

H BRUCE: SERVICES LLC _—
omparison e e T C—

Old way
Again: If Cond (&Counter *LT
ChgVar Var (&List_T
Value (%Sst (&List
SndPgmMsg Msg (&Lis
ChgVar Var (&Item D
ChgVar Var (&Counte
GoTo CmdLbl (Again)
EndDo

New way with DoFor and based variables

DoFor Var (&Counter) From(l) To(&List_Size)
SndPgmMsg Msg (&List Item)
ChgVar Var (%0fs (&List_Ptr)) +
Value (%0fs (§List_Ptr) + 10)
EndDo

Let’s see: Runs faster, less code to type, easy to read...

And incidently, changing the list from 50 to 300 "words” requires
no change to the CPP — just the PARM definition!
| know which way | would go ©

©2009 Bruce Vining Services LLC

12/6/2009

21

12/6/2009

What We'll Cover ... &@m S

Integers
Use Multiple Files in On
Programming Constructs

= Pointers and Based Variables
= Structures
= Compiler Options
= Wrap-up
43 ©2009 Bruce Vining Services LLC
Structures &w“

= Direct support for structures with V5

Dcl Var (&MyStruct) Type (*Char)
Dcl Var (&A SubField) Type (*Char)
Stg (*Defined) DefVar (&My

= Essentially the ability to name a portion of a previously
defined variable

= Storage (Stg) *Defined indicates that no additional storage
for the CL variable is to be allocated. The storage has
been previously allocated

= Defined on variable (DefVar) identifies the CL variable
being defined on. Position identifies the starting position of
the subfield within the defined on variable. Default is 1

) — &A_SubFieldis defined as a *Char variable that starts at position 51 of the
variable &MyStruct and has a length of 10 bytes. Note that this is base 1

©2009 Bruce Vining Services LLC

22

Struc}ures &wm e
(continued)
= The subfield does not need to
Dcl Var (&MyStruct) Type (*
Dcl Var (&Integer) Type (*
Stg (*Defined) DefV.

|

—d

— No need to use %Bin built-in to extra
— Can use a meaningful name for the s

= A *Char subfield is directly accessible (as are other types

such as *Ptr)
Dcl Var (&MyStruct) Type (*Char) Len (100)
Dcl Var (&PhoneNbr) Type (*Char) Len (10) +
Stg (*Defined) DefVar (&MyStruct 81)
— No need to use %Sst built-in to extract the field
— Can use a meaningful name for subfield

= DefVar CL variable can be Stg(*Based)

= Great for parameters when working with other user
programs or system APIs

©2009 Bruce Vining Services LLC

Stm Ctu res %w“m“ - L Ty for the System i user community
(continued)

= RPG
dMyStruct ds
d Char Fld 1
Int Fld 1
Char_Fld_2
Int Fld 2
Int_Fld_ 3 i

Q 0 o o

= COBOL
01 MY-STRUCT.
05 CHAR-FLD-1 PIC
05 INT-FLD-1 PIC S
05 CHAR-FLD-2 PIC
05 INT-FLD-2 PIC S
05 INT-FLD-3 PIC S

00010) .
00009
00001
00009
00009

BINARY.

BINARY.
BINARY.

©w O X W X

©2009 Bruce Vining Services LLC

12/6/2009

23

~ Structures
(continued)

= Traditional
Dcl

Dcl
Dcl
Dcl
Dcl
Dcl

ChgVar
ChgVar
ChgVar
ChgVar
ChgVar

Pt ety for the System i user community

CL approach

Var (&MyStruct)

Var (&Char_Fld 1) T
Var (&Int_Fld 1) T
Var (&Char_Fld 2) T
(
(

Var (&Int_Fld 2)
Var (&Int_Fld_3)

Len (10 0)
Len (10 0)

Type (*Dec)
Type (*Dec)

Var (&Char F1ld 1) Value (%Sst (&MyStruct 1 10))
Var (&Int_F1ld 1) Value (%Bin(&MyStruct 11 4))
Var (&Char Fld 2) Value (%Sst (&MyStruct 15 1))
Var (&Int_Fld 2) Value (%Bin(&MyStruct 16 4))
((%Bin (

Var (&Int_Fld 3) Value (%Bin (&MyStruct 20 4))

= Define appropriate fields and move the data to them

|

~ Structures
(continued)

= CL with Stg(*Defined)
Dcl
Dcl
Dcl
Dcl
Dcl
Dcl

= Define the

= Care to guess which performs better?

r—

©2009 Bruce Vining Services LLC

S for the System i user community

%wszmczs we

Var (&MyStruct) Typ

Var (&Char Fld 1) T
Len (10) DefVar (&

Var (¢Int_Fld 1) T
DefVar (&MyStruct

Var (&Char Fld 2) T
Len(l) DefVar (&MyStruct 15)

Var (&Int_Fld 2) Type (*Int) Stg(*Defined) +
DefVar (&MyStruct 16)

Var (&Int_Fld 3) Type (*Int)
DefVar (&MyStruct 20)

Stg (*Defined) +

fields and you’re done. The data is ready to go.

©2009 Bruce Vining Services LLC

12/6/2009

24

12/6/2009

What We'll Cover ... =8 e

= Integers
= Use Multiple Files in On
= Programming Constructs
= Pointers and Based Variables
= Structures
| = Compiler Options
= Wrap-up

©2009 Bruce Vining Services LLC

[

49
isin
— Default for IncFile keyword is to use the source file being compiled

Compiler Options “““‘@m
= Include CL Source (Include) comm
Include SrcMbr (MyInclude)
= Imbeds another source member wi
— Default is *IncFile — use the source file specified for the new
from

= Optional SrcFile keyword to identi
CRTCLPGM or CRTBNDCL IncFile keyword
= Can be used to imbed declare type commands and/or
commands to be run at run-time
= Does not support imbedded Include commands

©2009 Bruce Vining Services LLC

25

Compiler Options

What We'll Cover ... =g

BRUCE SERVICESLLC o &
[e s st s commeity

Declare Processing Options (DclPrc
source member can define additiona
with V6R1

DclPrcOpt UsrPrf (*Owner) BndDir

Options supported:

ActGrp Log

AlwRtvSrc SrtSeqg

Aut StgMdl

BndDir Text

BndSrvPgm UsrPrf

DftActGrp

LangID

DclPrcOpt value takes precedence over Crt command
Avoid lengthy problem determination due to a program being
compiled with the wrong options Tip

©2009 Bruce Vining Services LLC

T el for the System i user community

Integers

Use Multiple Files in O
Programming Constructs
Pointers and Based Variables
Structures

Compile Options

Wrap-up

52 ©2009 Bruce Vining Services LLC

12/6/2009

26

Additional Resources %M s

= IBM i5/0S Information Center
— V5R3: http://publib.boulder.ibm.com/infoc
— V5RA4: http://publib.boulder.ibm.com/infoc
— V6R1: http://publib.boulder.ibm.com/infoc

= Many examples in my CL-related articles
— http://www.brucevining.com/
— Select Publications
— Select Control Language (CL)

©2009 Bruce Vining Services LLC

Some Key Points w
BRUCE: SERVICESLLC for the ystem mer commanity
to Take Home

= CL continues to grow more

= Recent CL enhancements ¢
your productivity and syste
true win/win situation ©

— Stg(*Defined)

— Stg(*Based)

— DoFor, DoWhile, DoUntil

— DclIPrcOpt — avoids mistakes when compiling...

= CL will continue to grow in the future

54 ©2009 Bruce Vining Services LLC

12/6/2009

27

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/systems/scope/i5os/index.jsp
http://www.brucevining.com/

12/6/2009

Future Possible
Enhancements
= Support for 8-byte *Int a

Encrypted source debu
RtvCLSrc support for IL
Higher precision *Dec s
= Arrays

Date, Time, and Timestamp support
Floating point support

But NO Guarantees

©2009 Bruce Vining Services LLC

55

Last Chance
Before the Break
Questions?
How to contact me:
Bruce Vining

bvining@brucevining.com

56 ©2008 Bruce Vining Services LLC

56

28

[

PowerCL: &wm e —
eXtreme CL (XCL)

= Enhanced Productivity for CL Develop
Provides Commands Such As:
— Character Variable commands

» Upper Case (UPRCASE), Lower Case (L'

 Find String (FNDSTR), Find and Replace

+ Change CCSID (CHGTOCCSID) and mor

— Date, Time and Timestamp commands

+ Change Date (CHGDATXCL), Change Time (CHGTIMXCL), Change
Timestamp (CHTTSXCL)

* Retrieve Duration (RTVDURXCL) and more
— Data Queue commands

* Send, Receive, and Remove Entries (SNDDTAQE, RCVDTAQE,
RMVDTAQE)

» Display Entries (DSPDTAQE) and more

— User Space commands, Memory Management commands, Message
Monitoring commands

= Requires V5R4 or later
Support for ILE and OPM Environments
= For more information- http://www.brucevining.com/

©2009 Bruce Vining Services LLC

PowerCL.:
CL for Files (CLF)

%wsmﬁcmu 3 p
e T fox the System i user community
= CL File Support

— Externally described and Program des
Database — Physical, Logical, DDM, S
+ Read/Write/Update/Delete
* Arrival Sequence or Indexed Access
» Commitment Control
* Null Fields, Variable-length fields
Display files
+ Subfiles
* Separate Indicator Area
Printer files
— Commands such as ReadRcdCLF and CHAIN; PosDBFCLF and
SETLL; WrtReadCLF and EXFMT
= Multiple file support is more flexible than standard CL
= Superset of RPG/COBOL/C capabilities
= Requires V5R4 or later
= Support for ILE and OPM Environments

= For more information- http://www.powercl.com/

©2009 Bruce Vining Services LLC

12/6/2009

29

