
© 2012 IBM Corporation

Security Considerations for IBM i Application
Development

Jeffrey Uehling
IBM i Security Development
uehling@us.ibm.com

© 2012 IBM Corporation2

Security for Application Development - Outline

� Security Documentation
– Security related suggestions for application development

documentation

� Security Considerations
– Object ownership and public authority
– Private authority and Authorization lists

� System integrity Considerations
– Object domain, program state and security levels
– Trojan horse considerations
– Parameter validation, User Domain Objects

� Application Security Techniques
– Adopted authority
– Profile Swap

© 2012 IBM Corporation3

� When designing a new application, design documentation is a

requirement in order to provide the necessary security information to a

system administrator

� What objects in the application contain “sensitive” data (these

objects may need extra attention in order to secure the data)

� What objects in the application contain “sensitive” data (the

system admin may want to “AUDIT” access to the objects

� What user profiles are used to own the application (this may be

needed for audit purposes)

� Are there authorization lists used to provide security for the data

objects. The system admin will need this information in order to

add/remove users for application access

Application Documentation

© 2012 IBM Corporation4

� Application documentation is necessary if, prior to application

install/restore, objects need to be created by the system administrator

� Does an “application” user profile(s) need to be created in order to

establish correct ownership of objects?

� Does an “application” authorization list(s) need to be created in

order to secure application objects?

� An entry point into the application should be defined and documented.
This entry point could be a CL Command or a Program that is called

to “start” the application

� This entry point can then be used to provide access to the

application by granting users authority to “run” the application. An

authorization list would be a good mechanism to secure the entry

point into the application.

Application Documentation continued…

© 2012 IBM Corporation5

Security Overview & Considerations

© 2012 IBM Corporation6

� In this section of the presentation, we will discuss:

1. Object Ownership

2. Public Authority

3. Private Authority

4. Authorization lists

Security Overview

© 2012 IBM Corporation7

Object Ownership

� Every object (*FILE, *PGM, *DIR, *STMF, etc) on the system has an owner

� Ownership assigned when the object is initially created

� By default, the process user profile owns the object

� The owner is granted *ALL authority to the created object

� Options exist to assign ownership to the primary group profile of the

process user profile (not discussed in this presentation)

� Ownership can be changed via CHGOBJOWN or CHGOWN

Object Ownership Overview

© 2012 IBM Corporation8

Object ownership continued…

• Signon and create an object. Process user owns the object.
• CRTPF FILE(PAYLIB/PAYROLL) RCDLEN(80) AUT(*EXCLUDE)
• DSPOBJAUT OBJ(PAYLIB/PAYROLL) OBJTYPE(*FILE)

Object
owner

Owner
authority

© 2012 IBM Corporation9

� What user profile will own the application objects?

� Creating an “application” user profile is recommended to own all

application objects

� A product “build” procedure should exist to set object ownership during

application development & build

� The “application” user profile should be created during application install

via the pre-install exit program of RSTLICPGM (or created by the system

administrator prior to restore of the application on the system)

� CRTUSRPRF USRPRF(PAYROLL) PWD(*NONE) SPCAUT(*NONE)

� This provides support to “assign ownership” during the application restore
process

Object Ownership Considerations

© 2012 IBM Corporation10

� What user profile should own objects created (by the application) when the

application is run by an end user?

� Most likely NOT the user running the application…

� If the process user owns the objects, they will, by default, have *ALL
authority to the object which is a security exposure as they can change all
data or delete the object

� Use the CHGOBJOWN or CHGOWN interface, within your application, to
change object ownership at run-time to the application user profile

Object Ownership Considerations continued…

© 2012 IBM Corporation11

Object Public Authority

� Every object (*FILE, *PGM, *DIR, *STMF, etc) on the system has a Public

Authority Value

� Public Authority is assigned when the object is initially created

� Public authority is set to the value specified on the AUT parm of the

create interface (CL Command or API, e.g. CRTPF)

� For IFS, inherited from the directory (default)

� Public Authority can be changed via GRTOBJAUT or CHGAUT

Public Authority Overview

© 2012 IBM Corporation12

Where does *PUBLIC authority come from?

DSPLIBD PAYLIB

Create authority *SYSVAL

CRTxxx OBJ(paylib/payroll)

AUT(*LIBCRTAUT)

DSPSYSVAL

QCRTAUT *CHANGE

*PUBLIC authority is the authority
assigned to an object that provides
default access to users not explicitly
authorized to the object.

NOTE: The system default, because of history, is *CHANGE

© 2012 IBM Corporation13

“Short-cut” Authorities

*EXCLUDE

XXX*USE

XXXXXX*CHANGE

XXXXXXXXXX*ALL

*EXECUTE*DLT*UPD*ADD*READ*OBJREF*OBJALTER*OBJEXIST*OBJMGT*OBJOPR

Authority is required to access every object on the system

© 2012 IBM Corporation14

Object Authorities

Add and remove users and their authorities from
an authorization list.

*AUTLMGT – Authorization List
Management

Specify database file as the parent in a referential

constraint

*OBJREF – Object Reference

Add, clear, initialize and reorganize members of
database files, after and add attributes of

database files, add and remove triggers, change
attributes of SQL packages

*OBJALTER – Object Alter

Change ownership and delete the object, free
storage for the object, perform save and restore

operations

*OBJEXIST – Object Existence

Move or rename an object or add members to

database files. Superset of *OBJALTER and
*OBJREF

*OBJMGT – Object

Management

Look at the description of an object and use the
object as determined by the data authorities the

user has.

*OBJOPR – Object Operational

© 2012 IBM Corporation15

Data Authorities - Defined

Run a program or search a library or directory*EXECUTE

Remove entries from an object, such as

removing messages from a message queue or
deleting records from a file

*DLT (Delete)

Change entries in an object, such as changing
records in a file

*UPD (Update)

Add entries to an object, such as adding

messages to a message queue, or records to a
file

*ADD

Display the contents of an object, such as
viewing the records in a file

*READ

© 2012 IBM Corporation16

Public Authority

• CRTPF FILE(PAYLIB/PAYROLL) RCDLEN(80) AUT(*EXCLUDE)
• DSPOBJAUT OBJ(PAYLIB/PAYROLL) OBJTYPE(*FILE)

Public
authority

© 2012 IBM Corporation17

� What public authority setting should be set for the application objects?

� A product “build” procedure should exist to set public authority during

application development (or ensure public is set via the CRTxxx interface)

� Set *EXCLUDE public authority for “sensitive” data objects and *USE or

*CHANGE for objects used during run-time that do not contain sensitive

data.

� If adopted authority or profile swap is used within the application then all objects can

have PUBLIC(*EXCLUDE), which provides great security! This is discussed later in

this presentation.

� NOTE: *USE or *CHANGE on a DB2 or IFS File will expose data. *USE allows

the data to be “read” or FTP download from the server

� Never set *ALL public authority as this allows any user the ability to

delete or change ownership of the object

Public Authority Considerations

© 2012 IBM Corporation18

What public authority value should be used for objects created when the

application is run by an end user?

� Set *EXCLUDE public authority for “sensitive” data objects and *USE or

*CHANGE for objects used during run-time that do not contain sensitive data

� If adopted authority or profile swap is used within the application then all objects can

have PUBLIC(*EXCLUDE), and provides great security!. This is discussed later in this

presentation.

� NOTE: *USE or *CHANGE on a DB2 or IFS File will expose data. *USE allows

the data to be “read” or FTP download from the server

� Never set *ALL public authority as this allows any user the ability to

delete or change ownership of the object

� Set public authority for the object via the AUT parm of the CRTXXX interface at

application run-time… or….

� Use the GRTOBJAUT or CHGAUT interface, within your application, to change
public authority at run-time

Public Authority Considerations continued…

© 2012 IBM Corporation19

� Authority problems can occur at application run-time when the user running the
application is a low power user and tight security is applied to the objects

� Techniques, which can be utilized by the application, exist to avoid these

authority problems and will be discussed in this presentation

1. Authorization lists used to secure the application objects

2. Adopted user profile authority

3. Profile Swapping

Authority problems at application run-time

© 2012 IBM Corporation20

Private Authority

• GRTOBJAUT OBJ(PAYLIB/PAYROLL) OBJTYPE(*FILE) USER(FRED) AUT(*USE)
• DSPOBJAUT OBJ(PAYLIB/PAYROLL) OBJTYPE(*FILE)

Private
authority

© 2012 IBM Corporation21

� Private authority to application objects should be avoided or minimally used

� Private authorities increase the maintenance overhead for the system

administrator

� Adding new application users is problematic

� Private authorities can cause system performance problems at both run-

time and system save

� Private authorities complicate a security audit

Private Authority Considerations

© 2012 IBM Corporation22

� Private authorities, if necessary, should be implemented via an

authorization list (next topic)

� Group user profiles provide an alternative to granting private authorities to
individual users (but groups are usually not controlled by the application

development environment)

� Private authorities will provide object access, outside of an application run-

time environment, to perform operations such as a “Query” or “FTP” so at

times are necessary

Private Authority Considerations continued…

© 2012 IBM Corporation23

Authorization lists (Create the *AUTL and add users)

• CRTAUTL AUTL(PAYLIST) AUT(*EXCLUDE)
• EDTAUTL AUTL(PAYLIST)
• Add the users and authority via F6

Authorized
Users

© 2012 IBM Corporation24

Authorization lists continued (Secure the objects)…

• GRTOBJAUT OBJ(PAYLIB/PAYROLL) OBJTYPE(*FILE) AUTL(PAYLIST)
• GRTOBJAUT OBJ(PAYLIB/PAYFILE2) OBJTYPE(*FILE) AUTL(PAYLIST)
or
• CRTPF FILE(PAYLIB/PAYROLL) RCDLEN(80) AUT(PAYLIST)

Authorization
list

Display AUTL
Objects

© 2012 IBM Corporation25

� Authorization lists provide a great mechanism to authorize objects with the

same set of users and authority

� Documentation is a requirement to let the system administrator know what

authorization list(s) are used to secure the data (so they can add/remove

users when necessary)

� The “application” authorization list should be created during application

install via the pre-install exit program of RSTLICPGM (or created by the

system administrator prior to restore of the application on the system

� CRTAUTL AUTL(PAYLIST) AUT(*EXCLUDE)

� This provides support to “connect” the authorization list to each secured

object during the object restore process

Authorization list considerations

© 2012 IBM Corporation26

� Authorization lists help the system admin manage authority on the system

� Adding new application users is accomplished by adding the new user to

the authorization list

� Authorization lists can cause system performance problems at both run-time

and system save (private authorities are still involved)

� Use the authorization list only when necessary on a minimal number of objects

that need to be authorized for “outside the application” access

� Authorization lists can be used to secure “sensitive” objects

� Objects that are used at application run-time, that do not contain sensitive data,
should be secured with public authority or accessed via other security techniques
(described in this presentation)

Authorization list considerations continued…

© 2012 IBM Corporation27

Determining Object Access

© 2012 IBM Corporation28

How Does the System Determine Access an Object?

� When the user logs into the server and tries to access an object,
the OS will make checks to determine if the user is authorized to
perform the action against the object

– Object access is defined by the object type

• Call a *PGM

• Run a *CMD

• Open a *FILE

• Etc…

– Authority requirements differ between object types and usage

• *USE to call a *PGM or run a *CMD

• *USE to open a file for read and *CHANGE to open for update

• NOTE: *ALLOBJ special authority gives the user access
to all objects on the system. *ALLOBJ = Security officer!

© 2012 IBM Corporation29

How Does the System Determine Access an Object?

� To access or use an object, the user must have sufficient
authority to the object. The authority could come from:

– *ALLOBJ special authority (Security officer Authority)
• (privilege given to a user via the CRT/CHGUSRPRF command)

– Private authority to the object

– Authorization list authority

– *PUBLIC authority

– Adopted authority (discussed later)

© 2012 IBM Corporation30

i5/OS Authority Search Order

*ALLOBJ

Private

Authorization List

*ALLOBJ

Private

Authorization List

*ALLOBJ

Primary Group

Private
Authorization List

*ALLOBJ

Primary Group

Private
Authorization List

Object

Authorization List
Object

Authorization List

AdoptedAdopted

Stops when ANY authority
is found

Repeats for each group
until sufficient authority is

accumulated or no more

groups

Checked when no
authority is found for

User or Group(s)

Only checked when

authority is not sufficient

USER

GROUP(S)

*PUBLIC

© 2012 IBM Corporation31

IBM i System Integrity Considerations

© 2012 IBM Corporation32

User written applications, running at security level 40 or 50, MUST use

system interfaces (commands and APIs) to gain access to the objects.

– Authority checking is enforced by the system interface

– Parameter Validation is performed

– Object Domain checking is performed

– Object Hardware storage protection is performed

• Direct access by user programs to system objects is not allowed at Security

level 40 and 50 due to domain and hardware storage protection attributes of
the objects. “Direct access” means addressing the object internals directly via

“pointer” access (accessing the object “internals” directly via address).

• Test your application on security level 50, QSECURITY system value = 50

Authority checking and integrity - Security level 40 & 50

© 2012 IBM Corporation33

Program state is compared against object Domain

Programs running *SYSTEM state can access both *USER and *SYSTEM domain.

Programs running *USER state can only access *USER domain objects.

• Security level 30 ALLOWS access regardless of state/domain combination

• Security level 40 and 50 enforce domain checking

Program run state: *SYSTEM or *USER (DSPPGM/DSPSRVPGM)

Object Domain: *SYSTEM or *USER (DSPOBJD)

Object Domain attributes - Object integrity

Every object: *CMD, *FILE, *PGM, etc. has a “domain”
Every program has a “state” (*SYSTEM or *USER)

© 2012 IBM Corporation34

Object Domain, Program State
Object Domain

Program State

© 2012 IBM Corporation35

Creating User Domain Objects

You are not guaranteed that you will be able to create user domain user objects

(*USRSPC, *USRIDX, and *USRQ) in any library other than QTEMP

� QALWUSRDMN system value controls into which libraries/directories the

objects can be created.

� QTEMP is the only library that can always contain user domain versions of these
objects.

NOTE: User domain objects are a security risk because they can be

directly read on any security level via pointer access.

User domain objects

© 2012 IBM Corporation36

Library qualify object reference

� Program and command invocation should be library qualified rather than *LIBL

� CALL PAYLIB/PAYROLL (parms)

� QSYS/CRTDTAARA DTAARA(LIB/DTAARA1) TYPE(*CHAR)

� By qualifying the object reference, you prevent trojan horse attacks via the library
list. For example, someone creates a program called PAYROLL and places it in a
library in the library list ahead of PAYLIB.

� For objects that contain translatable text (message files, panel groups, etc) you

should use *LIBL for library qualification in order to pick up different versions of
the translated text.

� NOTE: Using library qualified references can cause potential testing difficulties. A test
system or partition is required to test application changes rather than just manipulating a

library list to test. The security benefits outweigh the test considerations!

Trojan Horse concerns

© 2012 IBM Corporation37

Test input parameters for valid values

� Testing parameter input is a good programming practice
� Testing ranges of valid values for numeric parms

� Testing for valid “strings” (*GOOD vrs *GOOOD)

� Testing for valid “syntax” of date, time, names, etc.

� ETC…

� The lack of parameter validation could cause an application
to fail and introduce a security problem
� Abnormal application end could leave a job with libraries in the library list, open

files, etc.

� Abnormal application end could leave a job at a command line with a profile

swap or adopted authority condition

� Make sure to add appropriate Exception Handling to your code to prevent

abnormal end

� ETC…

Parameter Validation Considerations

© 2012 IBM Corporation38

� Menu Security = Display a menu with allowable options and forget

about object security!

� Still a common “UNSECURE” practice today

� Don't rely on menu security!

� Menu Security was acceptable… 20 years ago

� Typical Design was PUBLIC(*ALL) for object security

� Objects are exposed…

� FTP from a client system, read/change any data file that has

PUBLIC(*CHANGE or *ALL), or download any PUBLIC(*USE) file

� Secure your sensitive objects with the appropriate level of authority

at the object level!

Menu Security

© 2012 IBM Corporation39

Security Implementation Options

1. Adopted User profile Authority
2. Profile Swap to obtain additional Authority

© 2012 IBM Corporation40

Adopted User Profile Authority

© 2012 IBM Corporation41

Adopted Authority implementation

• The implementation is to “Secure” all application objects so the
application is in control of all read and update operations
• Set PUBLIC authority to *EXCLUDE for ALL application objects

• The system administrator can grant authority to the “entry point” of the
application to provide access to authorized users

� Within the application, use program adopted authority to gain
access to objects in the QSYS file system while the application is
running

� To access objects in the IFS file system, Profile Swap can be
used (see Profile Swap topic in this presentation)

Adopted User Profile Authority

© 2012 IBM Corporation42

Adopted Authority Considerations

• If all objects are PUBLIC(*EXCLUDE), an end user has NO
access to any of the objects without running the application
• This means, to run a QUERY, FTP or other interface, outside of the

application, authority will be required. Private authority would need to be
granted to certain objects for the list of users who need access outside the
application

• Certain “network” interfaces, specifically in the DB2 area, will not
work without “extra” security considerations. Interfaces like
DRDA, Web Query, ODBC, JDBC, etc. cannot easily use adopted
authority so private authority would be required (unless you
design a procedure to call via the network interface)

Adopted User Profile Authority

© 2012 IBM Corporation43

Authorization scheme using adopted authority

• Create all application objects with PUBLIC(*EXCLUDE) authority
• Set the Ownership of all application objects to the application profile

Adopted User Profile Authority

Owner is
the
Application
Profile

Public
Authority
set to
*EXCLUDE

© 2012 IBM Corporation44

Adopted Authority – Program attribute

• When a program or service program adopts authority, it uses both
the authority of the “process (job) user” and the authority of the
program/srvpgm owner.

� Adopted authority specified when program/srvpgm is created

• C, CL, RPG, etc. --> by specifying USRPRF(*OWNER) on the
CRTxxxPGM or CRTBNDxx commands

• Or via the CHGPGM CL command, USRPRF(*OWNER) parm

Adopted User Profile Authority

© 2012 IBM Corporation45

Adopted Authority

� Used to temporarily give additional authority

� When a program with USRPRF(*OWNER) runs, the

authority in effect is the job user plus the owner of the

program

� Both special authorities and private authorities are

adopted (the program owner’s groups are not included)

� Additional authority is in effect for as long as the program

is in the call stack

© 2012 IBM Corporation46

Adopted Authority considerations

� Application designer must be careful to not include adopted authority
in any authority checks the application specifically makes (e.g.
CHKOBJ or authority checking APIs)

� IFS interfaces do not honor adopted authority
� Must “swap” to powerful profile to ensure a user is authorized to
access an IFS object (swap discussed later…)

� Make sure command line (or exit program) not available to end user
when adopting authority or swapped to a powerful profile. Use
LMTCPB(*YES) user profile parm to prevent command line access
with authority of the adopted/swapped profile.
� Adopted authority and swapped user profile authority given to the command line user
� Technique to allow a command line will be discussed in the “use adopted authority” charts

Adopted User Profile Authority considerations

© 2012 IBM Corporation47

Creating a program that adopts authority

• CRTCLPGM PGM(PAYROLL/ADOPTPGM) TEXT('Program that adopts owner
authority') USRPRF(*OWNER)

• DSPPGM PGM(PAYROLL/ADOPTPGM)

Program
adopts
authority

Program
adopts
the
owners
authority

Another
attribute
to be
discussed…
next

© 2012 IBM Corporation48

“Use Adopted Authority” program attribute

� A second program attribute, “Use Adopted Authority”, can be set on an
application program
� Set via the CHGPGM CL command, USEADPAUT parm

� Attribute is not available on the CRTxxxPGM commands

� This attribute causes all previously adopted authority, available to the
job from previously called programs, to be dropped/ignored when this
program is called

� This attribute allows an application to present a command line,
perform authority checks, etc., from the program with the Use Adopted

Authority = *NO attribute, without previously adopted authority being
considered

“Use Adopted Authority” – program attribute

© 2012 IBM Corporation49

Use Adopted Authority program attribute
• CRTCLPGM PGM(PAYROLL/NOADOPTAUT) TEXT(‘USEADPAUT example')
• CHGPGM PGM(PAYROLL/NOADOPTAUT) USEADPAUT(*NO)
• DSPPGM PGM(PAYROLL/NOADOPTAUT)

Program
does
not
adopt
authority

Program
does NOT
use
previously
adopted
user profile
authority

© 2012 IBM Corporation50

“Use Adopted Authority” program attribute

� The “Use Adopted Authority = *NO” attribute blocks all adopted
authority from previously called programs in the job

� The program with the “Use Adopted Authority = *NO” attribute can
itself adopt authority
� All previously adopted authority, from previously called programs, is “not used”

� The Owner of this program (the owner of the program with the Use Adopted
Authority = *NO) can be “adopted”. This provides the ability to drop all adopted
authority and include only the adopted authority from the well known “program

owner”.

“Use Adopted Authority” – continued…

© 2012 IBM Corporation51

Adopted Authority Example

PGM_A

Owner: APP_OWNER
User Profile: *OWNER

PGM_B

Owner: QSECOFR

User Profile: *OWNER

PGM_C

Owner: APP_OWNER

Use Adopted Authority: *NO

User Profile: *USER

JEFF then APP_OWNER

JEFF then APP_OWNER (from

PGMA) then QSECOFR

Only JEFF because USEADPAUT(*NO)

and USRPRF(*USER)

Program Call Stack
Users Checked

Scenario:
Need to modify a file
Requires *CHANGE authority
*PUBLIC authority of file is *EXCLUDE

Signed on User - JEFF

PGMC = USEADPAUT(*NO)

© 2012 IBM Corporation52

� Secure the application objects with PUBLIC(*EXCLUDE)
� Provides a secure environment for all application objects

� Use program adopted authority to gain access to the application
objects at application run-time

� Use the “Use Adopted Authority = *NO” attribute if a command line,
an authority check, etc. is necessary

� Use an Authorization List to provide “private authority” access to a
set of data files that may need to be examined “outside” of the
application, via Query, FTP, etc.

� Profile “Swap” is required for accessing secure IFS objects (next topic)

Adopted Authority Summary

© 2012 IBM Corporation53

Profile “Swapping”

© 2012 IBM Corporation54

Profile Swapping implementation

• The implementation is to “Secure” all application objects so the
application is in control of all read and update operations
• Set PUBLIC authority to *EXCLUDE for all application objects

• The system administrator can grant authority to the “entry point” of the
application to provide access to authorized users

� Within the application, use profile swapping to gain access to
objects in the IFS file system while the application is running
� Profile swap can be used to gain access to objects in the QSYS file system

as well as IFS

Profile Swapping for Object Access

© 2012 IBM Corporation55

Profile Swapping Considerations

• If all objects are PUBLIC(*EXCLUDE), an end user has NO
access to any of the objects without running the application

• This means, to run a QUERY, FTP or other interface, outside of the
application, authority will be required. Private authority would need to be
granted to certain objects for the list of users who need access outside the
application

• Certain “network” interfaces, specifically in the DB2 area, will not
work without “extra” security considerations. Interfaces like
DRDA, Web Query, ODBC, JDBC, etc. cannot easily use adopted
authority so private authority would be required (unless you
design a procedure to call via the network interface)

Proflie Swapping for Object Access

© 2012 IBM Corporation56

Profile Swapping

� Used to change the job user profile running the application
– NOTE: Profile Swap changes the jobs User Profile. All audit records sent

by the system will reflect the “swapped user profile”… but the job name in

the audit record doesn’t change.

� When the profile swapping interface is used to gain object access,
the process user profile of the job is changed from the currently
running user to the swapped user

– Job running as user “JEFF” is swapped, by the swap API called by the

application, to run as user “PAYROLL”

� All authority checks are based on the “Swapped Profile” (A profile
swap will change both the process profile and group profile list)
The swapped profile is in effect until another “Swap Profile” is run
or the job ends

© 2012 IBM Corporation57

Profile Swapping considerations

� Application designer must be careful to not include swapped

profile in any authority checks the application specifically

makes (e.g. CHKOBJ or authority checking APIs)

• Make sure command line (or exit program) not available to

end user when adopting authority or swapped to a powerful

profile. Use the LMTCPB(*YES) user profile parm on the

“swapped” user profile to limit command line access.
� Adopted authority and swapped user profile authority given to the command line user

� For profile swapping, you need to “swap back” to the previous (original) user if presenting a

command line interface

Profile Swapping considerations

© 2012 IBM Corporation58

Profile swap

Use of the QSYGETPH (profile handle create), QWTSETP (profile swap) and

QSYRLSPH (release profile handle) APIs allow the user profile of a job to be
swapped.

� Log in as user "JEFF"

� Swap to user “PAYROLL"

Swap APIs

1. QSYGETPH – Get Profile Handle

2. QWTSETP – Swap profile in the job using profile handle

3. QSYRLSPH – Release profile handle

Profile Swapping

© 2012 IBM Corporation59

This presentation contains programming examples ("Sample Code").

IBM grants you a nonexclusive copyright license to use the Sample Code to generate similar function

tailored to your own specific needs.

The Sample Code is provided by IBM for illustrative purposes only. The Sample Code has not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of the Sample Code.

The Sample Code contained herein is provided to you "AS IS" without any warranties of any kind. THE

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. SOME JURISDICTIONS DO NOT ALLOW

THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO

YOU. IN NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE CODE INCLUDING,

WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMS

OR OTHER DATA ON YOUR INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE

ARE EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Disclaimer

© 2012 IBM Corporation60

Profile Swap instructions

1. The source code in the following slide can be used to Test User Profile Swap

2. Copy the source code, next slide, into a source physical file, perhaps member
PAYADP in file QCLSRC, and update the source with a test user name

3. The CL program you create needs to adopt authority of a powerful user, such
as QSECOFR. The profile swap APIs (QSYGETPH) require a significant
amount of authority to run. The adopt will provide authority required to swap

when this program is run by a low power user

4. Create the program with PUBLIC(*EXCLUDE) authority. This program is only
an example program. When using profile swap in an application, the program
should never return control to the end user (command line) without swapping
back to the original user first..

1. Signon as user QSECOFR to create the program… or

2. Signon as an *ALLOBJ user, create the program, and then change the
owner to QSECOFR. The program doesn’t have to be owned by
QSECOFR, any *ALLOBJ profile will work, but QSECOFR exists on every
system so it is a good choice to use

5. CRTCLPGM PGM(PAYROLL/PAYADP) USRPRF(*OWNER) AUT(*EXCLUDE)

Profile Swap example code

© 2012 IBM Corporation61

/* Signon with an *ALLOBJ user, QSECOFR, to create this program. Create this program with USRPRF(*OWNER) to adopt */
/* authority required to get a profile handle for a USRPRF. NOTE: Control access to this program, PUBLIC(*EXCLUDE). */
/* NOTE: For testing purposes, use command, DSPJOB OPTION(*STSA), before and after each QWTSETP invocation to see */

/* the swap results (current user profile changes with the swap). */

PGM
DCL &HNDLCUR *CHAR 12 VALUE(' ') /* 12 character profile handle variable for the original user */
DCL &HNDL *CHAR 12 VALUE(' ') /* 12 character profile handle variable for the new user */

/* Call QSYGETPH to get a profile handle for the current job user profile. */

CALL QSYS/QSYGETPH ('*CURRENT' '*NOPWDCHK' &HNDLCUR)
/* Call QSYGETPH to get a profile handle for the profile to swap to. NOTE: Change XXX to the user who you want to swap to. */

CALL QSYS/QSYGETPH ('XXX' '*NOPWDCHK' &HNDL)

/* DSPJOB OPTION(*STSA) - for testing, display the job, current user profile */
/* Call QWTSETP to swap to the new profile. Job will run under user profile XXX after the swap */

CALL QSYS/QWTSETP &HNDL
/* DSPJOB OPTION(*STSA) - for testing, display the job, current user profile */

/* add application logic here */

/* CLEANUP processing */
/* Call QWTSETP to swap back to the original user profile. */

CALL QSYS/QWTSETP &HNDLCUR
/* DSPJOB OPTION(*STSA) - for testing, display the job, current user profile */

/* Call QSYRLSPH to release the two profile handles */

CALL QSYS/QSYRLSPH &HNDLCUR
CALL QSYS/QSYRLSPH &HNDL

ENDPGM

Example CL program to Swap User Process user profile

© 2012 IBM Corporation62

Profile swap (Cleanup)

Use of the QSYGETPH and QWTSETP APIs allow the user profile of a job to be swapped.

� Log in as user "JEFF"

� Swap to user “PAYROLL"

� The job is now running under user “PAYROLL". If the application fails, the job continues
to run under “PAYROLL"

� A Scope Message provides the ability to cleanup or swap back to original user.

� NOTE: Scope handling programs can be used to cleanup anything within the
application, such as profile swapping, libraries in the library list, open files, etc.

� Code example follows...

Profile Swap Cleanup and release of profile handle

© 2012 IBM Corporation63

This presentation contains programming examples ("Sample Code").

IBM grants you a nonexclusive copyright license to use the Sample Code to generate similar function

tailored to your own specific needs.

The Sample Code is provided by IBM for illustrative purposes only. The Sample Code has not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of the Sample Code.

The Sample Code contained herein is provided to you "AS IS" without any warranties of any kind. THE

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. SOME JURISDICTIONS DO NOT ALLOW

THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO

YOU. IN NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE CODE INCLUDING,

WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMS

OR OTHER DATA ON YOUR INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE

ARE EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Disclaimer

© 2012 IBM Corporation64

/* Signon with an *ALLOBJ user to create this program. Create this program with USRPRF(*OWNER) in order to adopt */
/* authority required to get a profile handle for a USRPRF. NOTE: Control access to this program, PUBLIC(*EXCLUDE). */

PGM
DCL &ERRCDE *CHAR 8 VALUE(X'0000000000000000')
DCL &MSGKEY *CHAR 4 VALUE(X'00000000')
DCL &HNDLCUR *CHAR 12 VALUE(' ')
DCL &HNDL *CHAR 12 VALUE(' ')

/* Call QSYGETPH to get a profile handle for the current user. */

CALL QSYS/QSYGETPH ('*CURRENT' '*NOPWDCHK' &HNDLCUR)

/* The following API will send a scope message that causes program SCOPEPGM in library QGPL to be called when */
/* this program ends either normally or abnormally. */

CALL QSYS/QMHSNDSM +

('*CSE ' /* Scope type */ +
'SCOPEPGM QGPL ' /* Scope program name */ +

&HNDLCUR /* Scope data */ +

X'0000000C' /* Scope data length - 12 */ +
&MSGKEY /* Message key */ +
&ERRCDE) /* Error code */

/* Call QSYGETPH to get a profile handle for a user. NOTE: Change XXX to the user who you want to swap to */

CALL QSYS/QSYGETPH ('XXX' '*NOPWDCHK' &HNDL)
/* Call QWTSETP to swap to the profile. */

CALL QSYS/QWTSETP &HNDL

/* Normal application logic */

ENDPGM

Scope Message program

© 2012 IBM Corporation65

PGM (&DATA) /* SCOPEPGM */

/**/

/* This program is called when the invocation that ran the */

/* QMHSNDSM API returns either normally or abnormally. */

/***/

DCL &DATA *CHAR 12 /* Data received as input when this scope */

/* handling program is called. This data */

/* is variable length and is declared and */

/* set by the program that issues the */

/* QMHSNDSM API. */

/* For this test program, pass the 12 */

/* byte profile handle of the original */

/* user obtained via *CURRENT on QSYGETPH. */

/* Program logic to cleanup. */

/* Call QWTSETP to swap back to the original profile. */

CALL QSYS/QWTSETP &DATA

/* Call QSYRSLPH to release the profile handle. */

CALL QSYS/QSYRLSPH &DATA

ENDPGM

Scope Handling program

© 2012 IBM Corporation66

� Secure the application objects with PUBLIC(*EXCLUDE)
� Provides a secure environment for all application objects

� Use profile swapping to gain access to the application objects at
application run-time

� Make sure you swap back to the original user if presenting a
command line or performing an authority check, etc.

� Use an Authorization List to provide “private authority” access to a
set of data files that may need to be examined “outside” of the
application, via Query, FTP, etc.

� Profile “Swap” is required for accessing secure IFS objects

Profile Swapping Summary

© 2012 IBM Corporation67

� Secure objects with PUBLIC(*EXCLUDE) authority

� Use Adopted Authority and/or Profile Swapping to gain object access

� Private Authorities and Authorization Lists can be used to provide

object authority outside of the application

� Always take care when presenting the user a command line when

using either adopted user profile authority or profile swapping

Summary

© 2012 IBM Corporation68

© 2012 IBM Corporation69

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in

other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM
offerings available in your area.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions
on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give
you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY

10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives

only.

The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or

guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the
results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations

and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions

worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type, equipment
type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal

without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.

All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are
dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this

document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-
available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document
should verify the applicable data for their specific environment.

Revised September 26, 2006

Special notices

© 2012 IBM Corporation70

IBM, the IBM logo, ibm.com AIX, AIX (logo), AIX 5L, AIX 6 (logo), AS/400, BladeCenter, Blue Gene, ClusterProven, DB2, ESCON, i5/OS, i5/OS (logo), IBM Business

Partner (logo), IntelliStation, LoadLeveler, Lotus, Lotus Notes, Notes, Operating System/400, OS/400, PartnerLink, PartnerWorld, PowerPC, pSeries, Rational, RISC

System/6000, RS/6000, THINK, Tivoli, Tivoli (logo), Tivoli Management Environment, WebSphere, xSeries, z/OS, zSeries, Active Memory, Balanced Warehouse,

CacheFlow, Cool Blue, IBM Systems Director VMControl, pureScale, TurboCore, Chiphopper, Cloudscape, DB2 Universal Database, DS4000, DS6000, DS8000,

EnergyScale, Enterprise Workload Manager, General Parallel File System, , GPFS, HACMP, HACMP/6000, HASM, IBM Systems Director Active Energy Manager,

iSeries, Micro-Partitioning, POWER, PowerExecutive, PowerVM, PowerVM (logo), PowerHA, Power Architecture, Power Everywhere, Power Family, POWER

Hypervisor, Power Systems, Power Systems (logo), Power Systems Software, Power Systems Software (logo), POWER2, POWER3, POWER4, POWER4+, POWER5,

POWER5+, POWER6, POWER6+, POWER7, System i, System p, System p5, System Storage, System z, TME 10, Workload Partitions Manager and X-Architecture are

trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks

owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or

other countries.

AltiVec is a trademark of Freescale Semiconductor, Inc.

AMD Opteron is a trademark of Advanced Micro Devices, Inc.

InfiniBand, InfiniBand Trade Association and the InfiniBand design marks are trademarks and/or service marks of the InfiniBand Trade Association.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered

trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.

Microsoft, Windows and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries or both.

NetBench is a registered trademark of Ziff Davis Media in the United States, other countries or both.

SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and SPECsfs are

trademarks of the Standard Performance Evaluation Corp (SPEC).

The Power Architecture and Power.org wordmarks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).

UNIX is a registered trademark of The Open Group in the United States, other countries or both.

Other company, product and service names may be trademarks or service marks of others.

Revised December 2, 2010

Special notices (cont.)

